Noise reduction: Scientists clear the chatter of buck converters

August 31, 2017

Buck converters, also known as step down converters, are chatty Cathys. The systems put out less power than they receive, and the tracking signals in the output can get stuck--the result is a small but harmful frequency fluctuation.

A research team composed of scientists from Golestan University, Concordia University, and Delft University of Technology has proposed a way to cut the chatter. The researchers published their study in IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the IEEE and the Chinese Association of Automation.

The chatter can lead to worn hardware, dangerous temperature changes in the circuits, and it makes the system difficult to accurately control.

"In order to suppress the chattering, a high order sliding mode control technique was [previously] proposed, and has been established as the most successful chattering avoidance method," wrote Prof. Hassan HosseinNia, Delft University of Technology in the Netherlands.

The problem, he continued, is that the control method becomes less reliable and robust if other, unknown variables come into play. HosseinNia and his team built upon the previously proposed sliding mode control technique--in which the systems are nonlinear and time-dependent, so the control is discontinuous. The technique basically samples the system, creating a representative sample of the system's typical behavior. To eliminate the chatter and better control the system, the scientists designed what they call a second order sliding mode controller via twisting algorithm.

"...the purpose of the sliding mode control for [the] buck converter is to control the output voltage," HosseinNia wrote. Since the output is known, the researchers need to control the other variables to meet the desired output. "The adaptive sliding mode control method for controlling the buck converter voltage, leads to a more effective performance against disturbances and system uncertainties to the [sliding mode control] method; the only difference is that in this method the parameter in [the] sliding line is not constant."

By allowing flexibility in the sliding line parameter, the researchers can clear the chatter while retaining robustness of the system at the output.

"Experimental validation of the present design proves that the control and tracking performance is improved in presence of uncertainties and disturbances while the stability is maintained," HosseinNia wrote. The scientists built a prototype buck converter to test the various designs, and found that their method provided the most efficient performance with the best settling time of the output voltage--the chatter was gone.
-end-
Fulltext of the paper is available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7974895

IEEE/CAA Journal of Automatica Sinica (JAS) is a joint publication of the Institute of Electrical and Electronics Engineers, Inc (IEEE) and the Chinese Association of Automation. JAS publishes papers on original theoretical and experimental research and development in all areas of automation. The coverage of JAS includes but is not limited to: Automatic control/Artificial intelligence and intelligent control/Systems theory and engineering/Pattern recognition and intelligent systems/Automation engineering and applications/Information processing and information systems/Network based automation/Robotics/Computer-aided technologies for automation systems/Sensing and measurement/Navigation, guidance, and control.

To learn more about JAS, please visit: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6570654

http://www.ieee-jas.org

Chinese Association of Automation

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.