Nav: Home

Scientists propose method to improve microgrid stability and reliability

August 31, 2017

The power it takes to bring a Boeing 747 from a resting state on the airport tarmac to speeding across the sky is enormous. The jet can continue in its active state for as long as its fuel lasts. A Frisbee, in contrast, takes far less energy to go airborne, but with no energy supply, it falls almost immediately.

The same principle can be extended to the traditional power system and decentralized microgrids. The power grid has a large reserve of energy to continue in an active state, while a microgrid quickly spends its reserve. The microgrid's renewable reserve, however, makes the microgrid system an attractive power prospect worth pursuing, and a collaborative team of researchers have proposed a way to better control the easily spent microgrids. They published the potential solution in IEEE/CAA Journal of Automatica Sinica (JAS), a joint publication of the IEEE and the Chinese Association of Automation.

"The microgrid concept is a big step towards solving the controllability problems of distributed resources," wrote Won-Sang Im, a postdoctoral researcher at Lehigh University,. "...For a microgrid to work autonomously, it must maintain its own supply-demand balance."

If the supply rate is too low, the microgrid will fall short of demand as the system's inertia depletes. This becomes all the more complicated with microgrids powered by renewable energy resources, such as solar panels or wind turbines. Storage systems are costly, but sunshine and wind strength are largely unreliable for consistent use.

The solution, Im and his team wrote, lies in a computer-based algorithm that can mirror the microgrid's inertia as needed by alternating the system's direct current over specific ranges. The researchers also noted that the microgrid's photovoltaic system can also be adjusted to boost or lower the current's inertia influence.

"In traditional power systems, supply-demand imbalance changes system frequency at a rate determined by the total system inertia," Im wrote. The idea works with the microgrid, just in multiple. "The solution tries to make [the] microgrid work like a large power grid with large inertia."

The solution does work as intended, according to simulations performed by the scientists. However, Im and his team wrote that the larger inertia limits the flexibility and fast response times. Their future work will focus on making microgrid controllers that are quicker and more accurate.
-end-
Fulltext of the paper is available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7738325&tag=1

IEEE/CAA Journal of Automatica Sinica (JAS) is a joint publication of the Institute of Electrical and Electronics Engineers, Inc (IEEE) and the Chinese Association of Automation. JAS publishes papers on original theoretical and experimental research and development in all areas of automation. The coverage of JAS includes but is not limited to: Automatic control/Artificial intelligence and intelligent control/Systems theory and engineering/Pattern recognition and intelligent systems/Automation engineering and applications/Information processing and information systems/Network based automation/Robotics/Computer-aided technologies for automation systems/Sensing and measurement/Navigation, guidance, and control.

To learn more about JAS, please visit: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6570654

http://www.ieee-jas.org

Chinese Association of Automation

Related Power Grid Articles:

Energy-efficient power electronics -- Gallium oxide power transistors with record values
The Ferdinand-Braun-Institut (FBH) has now achieved a breakthrough with transistors based on gallium oxide (beta-Ga2O3).
NYS winters could pose solar farm 'ramping' snag for power grid
By adding utility-scale solar farms throughout New York state, summer electricity demand from conventional sources could be reduced by up to 9.6 percent in some places.
Solar power -- largest study to date discovers 25 percent power loss across UK
Regional 'hot spots' account for the power slump and these are more prevalent in the North of England than in the south
How will climate change stress the power grid? Hint: Look at dew point temperatures
A new study suggests the power industry is underestimating how climate change could affect the long-term demand for electricity in the United States.
Protecting the power grid: Advanced plasma switch for more efficient transmission
Article describes PPPL research to help General Electric design an advanced and cost-effective power switch to protect the US electric grid.
Toward a secure electrical grid
Professor João Hespanha suggests a way to protect autonomous grids from potentially crippling GPS spoofing attacks.
Evaluation method for the impact of wind power fluctuation on power system quality
Abrupt changes of wind power generation output are a source of severe damage to power systems.
Nuclear power shutdowns won't spike power prices
Despite economic woes that could shutter two of Pennsylvania's nuclear power plants -- which generate 6 percent of the state's power -- power prices will remain steady due to low natural gas prices, according to Seth Blumsack, associate professor of energy policy and economics, Penn State.
Novel power meter opens the door for in-situ, real-time monitoring of high-power lasers
A group of researchers from National Institute of Standards and Technology (NIST) have developed a smaller, faster and more sensitive laser power meter in the form of a folding mirror they call a 'smart mirror.'
Science for a resilient EU power grid
The Joint Research Centre, the European Commission's science and knowledge service, have analysed 16 earthquakes, 15 space weather events and 20 floods, presenting recommendations on how to improve the resilience of the power grid against these natural hazards.
More Power Grid News and Power Grid Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.