Nav: Home

Aerospace test at Sandia goes green with alternative to explosives

August 31, 2017

ALBUQUERQUE, N.M. -- Sandia National Laboratories has successfully demonstrated a new, more environmentally friendly method to test a rocket part to ensure its avionics can withstand the shock from stage separation during flight.

The new method -- called the Alternative Pyroshock Test -- used a nitrogen-powered gas gun to shoot a 100-pound steel projectile into a steel resonant beam, which then transfers energy through a resonant cone attached to the part being tested. The resulting energy transfer mimics the conditions of stage separation in space. The first test of this type using the flight hardware was completed this spring.

Until now, pyroshock tests to ensure aerospace parts were ready for the rigors of flight had used explosives encased in lead to provide the impacts to parts needed for such experiments, mechanical engineer Mark Pilcher said.

The lead and explosives were environmental hazards, so cleanup was costly and time-consuming. The Sandia Labs team wanted a better approach.

"We recognized early in the program that we need to seek out alternative test methods in order to reduce our hazardous work exposure, minimize environmental waste and develop a controlled and repeatable test capability," Pilcher said. "Investigating a large-scale nonexplosive gas gun test became a reality when we partnered with Sandia's large-scale mechanical test facilities. The combined team worked hard to get to this test."

Hopkinson bar technology proved a more controllable alternative to explosives

Asked to research whether an alternative means of testing was possible using a gas gun, Sandia mechanical engineer Bo Song turned to a 1-inch-diameter Hopkinson bar. The Hopkinson bar was first suggested in 1914 by Bertram Hopkinson, a British patent lawyer and Cambridge University professor of mechanism and applied mechanics, as a way to measure the pressure produced by explosives. It was further modified in 1949 for dynamic stress-strain measurements of materials.

In Sandia's Experimental Impact Mechanics Laboratory, Song and his team conducted small-scale testing with a metal rod about 20 times smaller than that used in the full-scale test. They discovered the Hopkinson bar technology could provide the frequency levels and the mechanical energy needed in the large-scale test to recreate conditions found during flight.

Song's team conducted more than 50 tests. They looked at what types of projectiles to use, how fast the gas gun needed to shoot, how to design a Hopkinson bar-type apparatus called a resonant bar at a larger scale, how to design a steel resonant cone to transfer the energy to the object being tested and how to manipulate the pulse of energy using small copper "coins" called programmers or pulse shapers, which were placed on the surface of the resonant bar.

"The most difficult part was designing the programmers, or pulse shapers, because we had to select the right material, geometry and dimensions," Song said. "We got a lot of experience through this kind of testing for the future large-scale testing. The same concept can be used for a variety of defense and space applications. This provides a new path for pyroshock testing, but very clean and more controllable and will save a lot of costs."

Gas gun used in large-scale tests

The next phase of the Alternative Pyroshock Test applied the Hopkinson bar technology to a pneumatically driven gas gun.

For this test, the gas gun was not required to reach its maximum capacities. The 60-foot-long gas gun used compressed nitrogen gas to shoot metal projectiles into a resonant beam coupled with a resonant cone to expand the final diameter to interface with the rocket part, essentially a hybrid version of a large-scale Hopkinson bar.

"What's novel is the application of the Hopkinson bar," said mechanical engineer Patrick Barnes. "Typically the bar and test objects are really small, but in our case, we used a 1,500-pound, 8-foot-long, 8-inch diameter bar."

Like a musical tuning fork, the resonant bar and the resonant cone needed to vibrate at certain frequencies to apply the right amount of energy to the test object, Barnes said.

Ahead of the final tests, Barnes' team used an empty mock test object outfitted with accelerometers to measure the impact. Barnes changed the geometry and composition of the programmers to simulate the test conditions required for the program.

Now that Sandia has put in analysis and testing, future tests of this sort should require less development and cost less. "Ideally, we can create a repeatable environment, something we can dial in, so if they need to do this test again in the future, we can build this back up and start testing," Barnes said.
-end-
Sandia National Laboratories is a multimission laboratory operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration. Sandia Labs has major research and development responsibilities in nuclear deterrence, global security, defense, energy technologies and economic competitiveness, with main facilities in Albuquerque, New Mexico, and Livermore, California.

Sandia news media contact: Sue Holmes, sholmes@sandia.gov, (505) 844-6362

DOE/Sandia National Laboratories

Related Energy Articles:

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.
First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.
Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.
Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.
Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.
Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.
How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.
New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy from seawater
A new battery made from affordable and durable materials generates energy from places where salt and fresh waters mingle.
More Energy News and Energy Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.