Protein transport channel offers new target for thwarting pathogen

August 31, 2017

CORVALLIS, Ore. - A bacterium that attacks people suffering from chronic lung disease and compromised immune systems could be halted by disrupting the distribution channels the organism uses to access the nutrient-rich cytoplasm of its host cell.

The findings by researchers in Oregon State University's colleges of science and veterinary medicine are important because they suggest a new therapeutic target for one of the leading causes of bacterial infection in patients with HIV/AIDS.

The bacterium is Mycobacterium avium, the most common pathogen among non-tuberculosis mycobacteria. Highly opportunistic, M. avium invades and proliferates within a variety of human cells; it resides in a cytoplasmic vacuole and survives by remodeling its vacuolar compartment and resisting its host's antimicrobial mechanisms.

"Most bacteria that grow in phagocytic cells export their effector proteins that impair or redirect macrophage function by using a needle-like apparatus that perforates the vacuole membrane and delivers virulence-associated molecules to the cytoplasm," said co-corresponding author Luiz Bermudez of OSU's College of Veterinary Medicine. "But mycobacteria don't have that, so the question has always been, how do all these proteins get exported, how do they cross the vacuole membrane?"

They likely do so because proteins of the pathogen dock to transport proteins of the phagosome in the host cell in a way that allows for the efficient secretion of effector proteins. Co-corresponding author Lia Danelishvili, also of the College of Veterinary Medicine, identified voltage-dependent anion channels as a possible means of exporting those proteins.

"A VDAC is very small, but it can become larger if several VDAC proteins get together through polymerization," Bermudez said. "We found that yes, mycobacteria use surface proteins to bind to the VDAC. But although we tried to see if the proteins of the mycobacterium were exported by the VDAC, we couldn't show that. However, we did show that another component of the cell wall of the mycobacterium, lipids, are exported by that mechanism."

Next up is determining what specific physical and chemical interactions occur to make effector protein transport possible.

"The idea is to find out the mechanism bacteria use to secrete proteins produced in the cells that have important functions in controlling the phagocytic activity that's supposed to kill them," Bermudez said.
-end-
Findings were recently published in Scientific Reports.

Oregon State University

Related Bacterium Articles from Brightsurf:

Root bacterium to fight Alzheimer's
A bacterium found among the soil close to roots of ginseng plants could provide a new approach for the treatment of Alzheimer's.

Tuberculosis bacterium uses sluice to import vitamins
A transport protein that is used by the human pathogen Mycobacterium tuberculosis to import vitamin B12 turns out to be very different from other transport proteins.

Bacterium makes complex loops
A scientific team from the Biosciences and Biotechnology Institute of Aix-Marseille in Saint-Paul lez Durance, in collaboration with researchers from the Max Planck Institute of Colloids and Interfaces in Potsdam and the University of Göttingen, determined the trajectory and swimming speed of the magnetotactic bacterium Magnetococcus marinus, known to move rapidly.

Researchers show how opportunistic bacterium defeats competitors
The researchers discovered that Stenotrophomonas maltophilia uses a secretion system that produces a cocktail of toxins and injects them into other microorganisms with which it competes for space and food.

Genetic typing of a bacterium with biotechnological potential
Researchers at Kanazawa University describe in Scientific Reports the genetic typing of the bacterium Pseudomonas putida.

How the strep bacterium hides from the immune system
A bacterial pathogen that causes strep throat and other illnesses cloaks itself in fragments of red blood cells to evade detection by the host immune system, according to a study publishing December 3 in the journal Cell Reports.

The cholera bacterium can steal up to 150 genes in one go
EPFL scientists have discovered that predatory bacteria like the cholera pathogen can steal up to 150 genes in one go from their neighbors.

Exploiting green tides thanks to a marine bacterium
Ulvan is the principal component of Ulva or 'sea lettuce' which causes algal blooms (green tides).

The cholera bacterium's 3-in-1 toolkit for life in the ocean
The cholera bacterium uses a grappling hook-like appendage to take up DNA, bind to nutritious surfaces and recognize 'family' members, EPFL scientists have found.

Excellent catering: How a bacterium feeds an entire flatworm
In the sandy bottom of warm coastal waters lives Paracatenula -- a small worm that has neither mouth, nor gut.

Read More: Bacterium News and Bacterium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.