Day and night temperature differences influence global patterns in leaf size

August 31, 2017

A comprehensive analysis of global patterns in leaf size offers an answer to one of the longest-standing questions in plant ecology - why plant leaf size increases at lower latitudes -- scientists now report. Their findings could influence "'next-generation" vegetation models where leaf temperature and water use during photosynthesis play key roles. Leaf size is highly variable, and differs by over 100,000-fold among species worldwide. While it is well-established that tropical environments close to the equator are home to many large-leafed plant species, the "latitudinal gradient" observed in maximum leaf size (a pattern identified in the late 19th century) has not been well quantified, and the underlying climatic drivers are poorly understood. What's more, leaf energy balance models have proposed considerable disadvantages for plants with massive leaves in hot and dry climates, but were not able to reconcile the clear evolutionary success of plants residing in the tropics. Here, Ian Wright and colleagues studied leaf patterns in 7,670 species from 682 sites around the world, to better understand how predictions from the energy balance models (which account for fluxes of energy between leaves and their surroundings) were supported only in certain regions of the globe. The researchers developed a simplified model that revealed changes in daytime versus nighttime leaf-to-air temperatures were important determinants of geographic gradients in leaf size. The authors say their results shed new light on expected responses to changing climate that can be exploited for predictive modeling, and hint that leaf size has critical impacts on ecosystem functioning, both through effects on water and carbon fluxes.
-end-


American Association for the Advancement of Science

Related Plants Articles from Brightsurf:

When plants attack: parasitic plants use ethylene as a host invasion signal
Researchers from Nara Institute of Science and Technology have found that parasitic plants use the plant hormone ethylene as a signal to invade host plants.

210 scientists highlight state of plants and fungi in Plants, People, Planet special issue
The Special Issue, 'Protecting and sustainably using the world's plants and fungi', brings together the research - from 210 scientists across 42 countries - behind the 2020 State of the World's Plants and Fungi report, also released today by the Royal Botanic Gardens, Kew.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

How do plants forget?
The study now published in Nature Cell Biology reveals more information on the capacity of plants, identified as 'epigenetic memory,' which allows recording important information to, for example, remember prolonged cold in the winter to ensure they flower at the right time during the spring.

The revolt of the plants: The arctic melts when plants stop breathing
A joint research team from POSTECH and the University of Zurich identifies a physiologic mechanism in vegetation as cause for Artic warming.

How plants forget
New work published in Nature Cell Biology from an international team led by Dr.

Ordering in? Plants are way ahead of you
Dissolved carbon in soil can quench plants' ability to communicate with soil microbes, allowing plants to fine-tune their relationships with symbionts.

When good plants go bad
Conventional wisdom suggests that only introduced species can be considered invasive and that indigenous plant life cannot be classified as such because they belong within their native range.

How plants handle stress
Plants get stressed too. Drought or too much salt disrupt their physiology.

Can plants tell us something about longevity?
The oldest living organism on Earth is a plant, Methuselah a bristlecone pine (Pinus longaeva) (pictured below) that is over 5,000 years old.

Read More: Plants News and Plants Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.