Biophysics: Self-centered

August 31, 2018

Essential biological processes, such as cell division, must be tightly regulated. For example, correct localization of the plane of cell division is vital for correct segregation of the duplicated genomes, and hence for the survival of both daughter cells. Bacterial cells generally divide symmetrically by forming a contractile ring, which is progressively constricted to form two daughter cells of equal size. In a new study, LMU doctoral student Silke Bergeler and her supervisor Professor Erwin Frey have developed a model that explains how the plane of division is specified in the rod-shaped bacterium Myxococcus xanthus. The model, which is based on experimental work done by Professor Lotte Søgaard-Andersen and her group at the Max Planck Institute for Terrestrial Microbiology in Marburg, is described in the online journal PLoS Computational Biology.

Prior to cell division, the bacterial genome is replicated. The region occupied by the bacterial chromosome (or 'nucleoid') is functionally equivalent to the nucleus in the cells of higher organisms. When the cell divides, the nucleoid must be centered, so that the duplicated nucleoids are equally divided between the two daughter cells. Three proteins have been identified which are required for the proper localization of the plane of cleavage at mid-cell in M. xanthus. Experiments by the research group in Marburg have shown that two of these, named PomX and PomY, assemble to form a large cluster, which will ultimately mark the position of mid-cell. The third, PomZ, is an ATPase - an enzyme that binds the nucleotide ATP and can convert it into ADP. Dimer molecules made of two ATP-bound PomZ proteins can attach to the chromosomal DNA and diffuse along it, and can also bind to the PomXY cluster and diffuse at a lower rate. The action of this system ensures that the cluster is localized to the midpoint of the nucleoid, which coincides with mid-cell, where the contractile ring will form.

"We have developed a mathematical model and used it to study the detailed dynamics of the process that leads to the positioning of the cluster in the center of the nucleoid," says Bergeler. The analysis revealed that the PomZ proteins are the crucial components in this operation. They first bind to the chromosomal DNA and subsequently recruit the cluster, thus tethering it to the nucleoid. Simultaneous binding of PomZ to the cluster and the chromosomal DNA, however, eventually activates the ATPase activity of PomZ, which causes it to detach from both the cluster and the DNA. It then diffuses in the cytosol and finally binds randomly to the nucleoid again. In addition to this delay, one other factor plays an important role in shuttling the cluster to midnucleoid: The chromosome exhibits a certain degree of elasticity, such that a specific position on the chromosome can explore the region around its equilibrium position as a result of thermal fluctuations. "Thanks to this elasticity, PomZ proteins that are bound to both the chromosome and the PomXY cluster can exert a net force on the cluster." Moreover, simulations show that the velocity of the cluster depends on the difference between the fluxes of PomZ into the cluster from either side. "The crucial point is that, if the cluster is asymmetrically placed, more PomZ proteins will be fed into it from the direction of the longer segment of the nucleoid than from the opposite side," Bergeler explains. This imbalance in the flux of PomZ serves to push the cluster toward, rather than away from, mid-cell. When the cluster's location coincides with the center of the chromosome, it remains in place because the number of PomZ molecules impinging on it from each side is essentially the same.

According to its authors, the model is also of interest in the context of other intracellular positioning systems, such as the Min system used to center the contractile ring in E. coli, plasmid segregation, or the mechanisms that are responsible for the localization of flagella. "By studying the similarities and differences between the various systems, one can identify the general mechanisms on which they are based," says Frey. This view is supported by the finding that the proposed mechanism can in principle lead to two distinct dynamic behaviors. If the dynamics of PomZ's movement along the nucleoid is slow relative to the diffusion of the cluster, the latter does not stably maintain its position at midnucleoid. Instead, it oscillates back and forth about the center of the nucleoid.
PLoS Computational Biology 2018


Regulation of Pom cluster dynamics in Myxococcus xanthus
Silke Bergeler, Erwin Frey


Prof. Dr. Erwin Frey
Lehrstuhl fuer Theoretische Physik - Statistische Physik
Statistical and Biological Physics
Phone: +49 (0) 89 / 2180-4538

Ludwig-Maximilians-Universität München

Related DNA Articles from Brightsurf:

A new twist on DNA origami
A team* of scientists from ASU and Shanghai Jiao Tong University (SJTU) led by Hao Yan, ASU's Milton Glick Professor in the School of Molecular Sciences, and director of the ASU Biodesign Institute's Center for Molecular Design and Biomimetics, has just announced the creation of a new type of meta-DNA structures that will open up the fields of optoelectronics (including information storage and encryption) as well as synthetic biology.

Solving a DNA mystery
''A watched pot never boils,'' as the saying goes, but that was not the case for UC Santa Barbara researchers watching a ''pot'' of liquids formed from DNA.

Junk DNA might be really, really useful for biocomputing
When you don't understand how things work, it's not unusual to think of them as just plain old junk.

Designing DNA from scratch: Engineering the functions of micrometer-sized DNA droplets
Scientists at Tokyo Institute of Technology (Tokyo Tech) have constructed ''DNA droplets'' comprising designed DNA nanostructures.

Does DNA in the water tell us how many fish are there?
Researchers have developed a new non-invasive method to count individual fish by measuring the concentration of environmental DNA in the water, which could be applied for quantitative monitoring of aquatic ecosystems.

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.

Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.

DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.

A new spin on DNA
For decades, researchers have chased ways to study biological machines.

From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.

Read More: DNA News and DNA Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to