Manganese single-atom catalyst boosts performance of electrochemical CO2 Reduction

August 31, 2020

Electrochemical CO2 reduction reaction (CO2RR) is a promising approach to convert CO2 into useful chemicals.

A research team led by Prof. ZHANG Suojiang from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences prepared a manganese (Mn) single-atom catalyst (SAC) with Mn-N3 site supported by graphitic C3N4, which exhibited efficient performance of CO2 electroreduction.

This work was published in Nature Communications on August 28.

It is a great challenge to obtain high Faradaic efficiency (FE) and high current density simultaneously by cheap catalysts for CO2RR.

The prepared catalyst exhibited a maximum CO FE of 98.8% with 14.0 mA cm-2 CO current density (jCO) at overpotential of 0.44 V in KHCO3 electrolyte, outperforming all reported Mn SACs.

Moreover, a higher jCO value of 29.7 mA cm-2 was obtained at overpotential of 0.62 V, when ionic liquid was used as electrolyte.

X-ray absorption spectroscopy and high-angle annular dark-field scanning transmission electron microscopy confirmed atomically dispersed Mn in the catalyst, and the best-fitting analysis indicated that the isolated Mn atom was three-fold coordinated by N atoms.

"In situ X-ray absorption spectra and density functional theory calculations demonstrated that the remarkable performance of the catalyst was attributed to the Mn-N3 site, which facilitated the formation of the key intermediate COOH* through a lowered free energy barrier," said Prof. ZHANG Suojiang.

This work shows that the CO2RR activity of Mn-based catalysts can be enhanced through changing coordinated environment.

"It provides an important scientific basis and feasibility for low cost and high efficient electrochemical CO2 reduction to useful chemicals," said Prof. ZHANG Xiangping, a co-corresponding author of the paper.
-end-


Chinese Academy of Sciences Headquarters

Related Manganese Articles from Brightsurf:

Stellar explosion in Earth's proximity
When the brightness of the star Betelgeuse dropped dramatically a few months ago, some observers suspected an impending supernova - a stellar explosion that could also cause damage on Earth.

Lightweight green supercapacitors could charge devices in a jiffy
In a new study, researchers at Texas A&M University have described their novel plant-based energy storage device that could charge even electric cars within a few minutes in the near future.

Manganese single-atom catalyst boosts performance of electrochemical CO2 Reduction
A research team led by Prof. ZHANG Suojiang from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences prepared a manganese (Mn) single-atom catalyst (SAC) with Mn-N3 site supported by graphitic C3N4, which exhibited efficient performance of CO2 electroreduction.

Way, shape and form: Synthesis conditions define the nanostructure of manganese dioxide
Scientists at Tokyo Institute of Technology explore a novel and simplistic method to synthesize manganese dioxide with a specific crystalline structure called β-MnO2.

Bacteria with a metal diet discovered in dirty glassware
Newfound bacteria that oxidize manganese help explain the geochemistry of groundwater.

Higher manganese levels in early pregnancy linked to lower preeclampsia risk
An analysis of data from more than 1,300 women followed prospectively through pregnancy found that women with lower levels of the essential mineral manganese in early pregnancy were more likely to develop the serious high blood pressure syndrome called preeclampsia in late pregnancy.

Supercapacitor promises storage, high power and fast charging
A new supercapacitor based on manganese oxide could combine the storage capacity of batteries with the high power and fast charging of other supercapacitors, according to researchers at Penn State and two universities in China.

Topological materials for information technology offer lossless transmission of signals
New experiments with magnetically doped topological insulators at BESSY II have revealed possible ways of lossless signal transmission that involve a surprising self-organisation phenomenon.

Scientists link decline of baltic cod to hypoxia -- and climate change
If you want to know how climate change and hypoxia -- the related loss of oxygen in the world's oceans -- affect fish species such as the economically important Baltic cod, all you have to do is ask the fish.

Secure printing with water-based invisible ink
Researchers in China have developed a rewriteable paper coating that can encrypt secret information with relatively low-tech invisible ink -- water.

Read More: Manganese News and Manganese Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.