Nav: Home

Warmer, acidifying ocean brings extinction for reef-building corals, renewal for relatives

August 31, 2020

Changes in ocean chemistry and temperature have had a dramatic effect on the diversity of corals and sea anemones, according to a team of scientists who have traced their evolution through deep time. A new study, published Aug. 31 in the journal Nature Ecology and Evolution, finds that reef-building corals emerged only when ocean conditions supported the construction of these creatures' stony skeletons, whereas diverse softer corals and sea anemones flourished at other times. Without a significant change to anthropogenic carbon emissions, the new findings present stark implications for the present and future of hard-bodied corals while suggesting a silver lining for the diversity of some of their softer-bodied relatives.

New genetic analyses show that corals, which together with sea anemones make up a class of animals known as anthozoans, have been on the planet for 770 million years. That is 250 million years before the earliest undisputed fossil evidence of their existence--and long enough to experience massive shifts in climate, fluctuations in ocean chemistry and several mass extinctions.

In the new study, a research team led by scientists from Harvey Mudd College, the American Museum of Natural History and the Smithsonian's National Museum of Natural History examined how these past conditions affected anthozoan diversity. That was possible thanks to a new molecular approach developed by Andrea Quattrini, research zoologist and curator of corals at the National Museum of Natural History, Catherine McFadden, a biologist at Harvey Mudd College, and Estefanía Rodríguez, a curator at the American Museum of Natural History, which allowed the team to compare nearly 2,000 key regions of anthozoan genomes to discern the evolutionary relationships between species. The team analyzed hundreds of anthozoan specimens that were collected from around the world and are now stored in museum collections. When this molecular data was aligned with fossil evidence of anthozoan history, it revealed how these diverse animals evolved over geologic time.

Over the Earth's history, changes in acidity and ion concentrations have shifted the ocean's chemical composition between two states, known as aragonite and calcite seas. These changes, as well as changes in ocean water temperature, appear to have played an important role in determining what kinds of skeletons corals were able to produce and, thus, how anthozoans evolved.

Stony corals--the type that build massive reefs that support complex marine ecosystems--take up minerals from the water to construct hard skeletons from a form of calcium carbonate known as aragonite. Other corals, such as sea fans and black corals, build their softer skeletons from protein or calcite (a less soluble form of calcium carbonate), whereas sea anemones have no skeleton at all.

Working with an international team of researchers, including Gabriela Farfan, the National Museum of Natural History's Coralyn W. Whitney Curator of Gems and Minerals, Quattrini and colleagues found that stony corals did not arise until conditions favored the construction of their aragonite skeletons--periods of aragonite seas, when ocean temperatures were relatively cool. During periods of calcite seas, when carbon dioxide is more abundant in the atmosphere and oceans are more acidic, evolution favored anemones and corals that built their skeletons from protein or calcite.

Notably, it was these other anthozoans that fared best after reef crises--times when up to 90% of reef-building organisms died off as oceans warmed and became more acidic. "Our study showed that after these reef crises, we actually get an increased diversification of anthozoans in general, particularly those that can do well under these climate conditions--ones that aren't producing aragonite and aren't making big reefs," Quattrini said.

That is consistent with observations from today's reefs, which are threatened by climate change and other human activities. "Current ecological studies have shown that when stony corals die off, these other anthozoans start to colonize dead coral and prosper," Quattrini said. "We actually see that in our evolutionary tree, too."

"Unfortunately, although these softer-bodied species may adapt better to climate change than stony corals, they don't form large reefs," McFadden said. "So, in the future, reefs may be replaced by different marine communities. This already appears to be happening in the Caribbean where stony corals are being replaced by 'forests' of sea fans."

Today, about 1,300 species of stony coral inhabit the ocean, favored by aragonite sea conditions. But rising levels of carbon dioxide in the atmosphere are warming and acidifying the waters, making them less hospitable for these and other organisms whose shells and skeletons are made from aragonite. "Aragonite is expected to dissolve under ocean acidification," Quattrini said. "As our seas are becoming more acidic and warmer, it's likely that the skeletons of corals will dissolve or not be able to grow."

The new study suggests that as the climate changes, these ecosystems may also see increased diversification of anthozoans without aragonite skeletons. Nevertheless, loss of reef-building corals will have devastating consequences for communities who depend on reefs and the rich, complex ecosystems they support for fishing, shoreline protection and tourism. "Corals have suffered extinctions in the past when climate has posed challenges, and we'll likely see that in the future," Quattrini said. "The best way to protect them is to curb our carbon emissions."

"This study shows us how nature through evolution is able to adapt, survive and reinvent itself, so when hard corals are not able to survive, their soft-bodied relatives such as sea anemones will thrive instead," Rodríguez said. "The question is whether we will be able to adapt and reinvent ourselves once nature, as we currently know it, is not there anymore."
-end-
Funding for this research was provided by the National Science Foundation.

Smithsonian

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.