Dual action anthrax vaccine more effective

September 01, 2003

BOSTON, MA -Researchers at Harvard Medical School and Brigham and Women's Hospital have created a vaccine that delivers a one-two punch to anthrax and could become a powerful defensive weapon against bioterrorism.

The new vaccine prods the immune system to attack both the anthrax bacterium (Bacillus anthracis) and the toxins it makes. This dual action represents an improvement over the currently available vaccine, which targets only the toxins.

In a test of the vaccine using mice, animals were injected first with the vaccine, then 10 days later with anthrax toxin. All the vaccinated mice survived the toxic challenge, while unvaccinated mice exposed to the toxin died within 24 hours.

"It worked like a charm," said Julia Wang, Harvard Medical School assistant professor at Brigham and Women's Hospital, who led the study. "Clearly, there is a need for a better anthrax vaccine," she added. "The bivalent vaccine we came up with is likely to be much more effective at protecting against systemic anthrax because it targets both virulence factors of Bacillus anthracis--its toxin and its capsule."

The researchers suggest that the new vaccine will also be an important tool for treating those already infected with anthrax as a so-called therapeutic vaccine. Research shows it may be important to raise antibacterial antibodies in those individuals to combat bacilli that multiply in victims long after antibiotic treatment has ended.

To make the vaccine, the scientists chemically joined two anthrax molecules that are the bacterium's major virulence factors in disease, but in a vaccine act as antigens, stimulating an infected person's immune system to produce disease-fighting antibodies. One is protective antigen, a protein that joins with another called lethal factor to make the anthrax lethal toxin that kills immune cells. This combined protective antigen, made by genetically modified E. coli bacteria, is the basis of the existing anthrax vaccine and was also used in the experimental vaccine.

In addition to protective antigen, the new vaccine incorporates capsular poly-gamma-D-glutamic acid (PGA), a polypeptide making up the capsule that hides the bacterium from the host's immune system, allowing it to replicate unchallenged. PGA normally elicits only a weak immune response, but when coupled with the highly immunogenic protective antigen, it becomes strongly immunogenic itself. Taking advantage of a harmless bacterium, Bacillus licheniformis, which has a PGA capsule identical to that of anthrax, the researchers purified PGA from B. licheniformis for use in the vaccine.

Next, they injected mice with the vaccine three times over four weeks and drew the animals' blood to measure antibodies (immunoglobulins) specific to the protective antigen and PGA antigens. They found that levels of PGA- and protective-antigen-specific immunoglobulin G each rose significantly after the three injections.

Using immunoelectron microscopy, the investigators showed that the PGA antibodies surrounded the capsule of B. licheniformis (again serving as a stand-in for B. anthracis). The antibodies successfully recruited complement, a part of the immune system that kills microorganisms by disrupting their cell membranes. Likewise, the scientists showed that mouse blood containing antibodies to protective antigen protected cells against damage from anthrax toxin by blocking protective antigen. The findings appear in the Proceedings of the National Academy of Sciences online early edition for the week of Sept. 1.

"This study provides a good example of how scientists not previously trained in biodefense research can quickly make a contribution once they put their heads together on a problem," said co-author John Mekalanos, head of the Department of Microbiology and Molecular Genetics at Harvard Medical School. The authors further suggest that the dual action approach might be used in vaccines against other microorganisms.

Wang said the vaccine will now have to be tested in animals infected with actual anthrax sporesæas opposed to the recombinant lethal toxin used in this study to replicate the natural disease process.

The lead author on the study is HMS research fellow Gi-Eun Rhie. Additional authors are HMS professor John Collier, HMS research assistant Micheal Roehrl, and HMS research fellow Micheal Mourez.
-end-
BRIGHAM AND WOMEN'S HOSPITAL
http://www.brighamandwomens.org/

BWH is a 725-bed nonprofit teaching affiliate of Harvard Medical School and a founding member of Partners HealthCare System, an integrated health care delivery network. Internationally recognized as a leading academic health care institution, BWH is committed to excellence in patient care, medical research, and the training and education of health care professionals. The hospital's preeminence in all aspects of clinical care is coupled with its strength in medical research. A leading recipient of research grants from the National Institutes of Health, BWH conducts internationally acclaimed clinical, basic and epidemiological studies.

HARVARD MEDICAL SCHOOL
http://www.hms.harvard.edu/

Harvard Medical School has more than 5,000 full-time faculty working in eight academic departments based at the School's Boston quadrangle or in one of 47 academic departments at 17 Harvard teaching hospitals and research institutes. Those Harvard hospitals and research institutions include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Hospital, Center for Blood Research, Children's Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, Massachusetts Mental Health Center, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, VA Boston Healthcare System.

Additional Contacts:
Brigham and Women's Hospital
Jeff Ventura or Amy Dayton
617-534-1600

Harvard Medical School

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.