Guiding light on a nanoscale at Berkeley

September 01, 2004

Another important step towards realizing the promise of lightning fast photonic technology has been taken by scientists with the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley. These researchers have demonstrated that semiconductor nanoribbons, single crystals measuring tens of hundreds of microns in length, but only a few hundred or less nanometers in width and thickness (about one ten-millionth of an inch), can serve as "waveguides" for channeling and directing the movement of light through circuitry.

"Not only have we shown that semiconductor nanoribbons can be used as low-loss and highly flexible, optical waveguides, we've also shown that they have the potential to be integrated within other active optical components to make photonic circuits," says Peidong Yang, a chemist with Berkeley Lab's Materials Sciences Division, and a professor with UC Berkeley's Chemistry Department, who led this research.

The research results of Yang and his team are reported in the August 27, 2004 issue of the journal Science. Co-authoring the paper along with Yang were Matt Law, Donald Sirbuly, Justin Johnson, Josh Goldberger and Richard Saykally, all of whom are with affiliated with either Berkeley Lab, UC Berkeley, or both.

In photonic technology, or photonics, the use of electrons moving through semiconductors as information carriers is replaced with the movement of light waves, as measured in units of energy called photons. Whereas electrons must carry information sequentially, one electron at a time, with photons of light, there's virtually no limit to the number of information packets that can simultaneously be transmitted. Call it unparalleled parallel processing.

Hints of the potential of photonics can be glimpsed in today's fiber-optic communications, where a single optical fiber can carry the equivalent of 300,000 telephone calls at the same time. But the power of fully realized photonics goes far beyond this. For example, it's been estimated that a photonic Internet could transmit data at 160 gigabits per second, which is thousands of times faster than today's typical high-speed connection. Another possibility is the optical computer, which could solve problems in seconds that would take today's electronic computers months or even years to solve.

For the promise of photonics to be delivered, however, scientists must first find a way to manipulate and route photons with the same dexterity as they manipulate and route electrons. Whereas other research efforts have successfully experimented with the use of photonic bandgap materials to accomplish this, Yang and his colleagues have focused on the chemical synthesis of nanowires and nanoribbons - they're like nanotubes only solid throughout rather than hollow inside - that can then be assembled into photonic circuits.

"Chemically synthesized nanowires and nanoribbons have several features that make them good photonic building blocks," says Yang. "They offer inherent one-dimensionality, a diversity of optical and electrical properties, good size control, low surface roughness, and, in principle, the ability to operate above and below light diffraction limits."

Yang and his colleagues synthesized their nanoribbon waveguides from tin oxide, a semiconductor of keen technological interest for its exceptional potential to be used to transport both photons and electrons in nanoscale (also referred to as subwavelength) components. The single crystalline nanoribbons they produced measured about 1,500 microns in length and featured a variety of widths and thicknesses. Yang says ribbons that measured between 100 to 400 nanometers in width and thickness proved to be ideal for guiding visible and ultraviolet light.

"To steer visible and ultraviolet light within dielectric waveguides such as the tin oxide crystals we were synthesizing, we needed to make sure that a sufficient portion of the light's electromagnetic field was confined within the nanostructures so there would be minimal optical transmission loss," Yang says. "Considering the dielectric constant of the tin oxide, it follows that the diameter of 100 to 400 nanometers would be ideal for waveguiding light that measures from 300 to 800 nanometers in wavelengths."

In their tests, Yang and his colleagues attached nanowire lasers and optical detectors to opposite ends of their tin oxide nanoribbons, then demonstrated that light could be propagated and modulated through subwavelength optical cavities within the nanoribbons. The nanoribbons were long and strong enough to be pushed, bent and shaped with the use of a commercial micromanipulator under an optical microscope. Freestanding ribbons were also extremely flexible and could be curved through tight S-turns and twisted into a variety of shapes, which Yang says is "remarkable for a crystal that is brittle in its bulk form."

Yang also says that while the nanoribbon waveguides can be coupled together to create optical networks that could serve as the basis of miniaturized photonic circuitry, the ribbons need to be in close proximity, preferably in direct physical contact, to enable an efficient transfer of light between them.

"We tested various coupling geometries and found that a staggered side-by-side arrangement, in which two ribbons interact over a distance of several micrometers, outperforms direct end-to-end coupling," Yang says.

The nanoribbon waveguides that Yang and his co-authors report in their Science paper are the newest addition to the growing assortment of nanosized device elements that Yang and his research group have been able to make. Their "toolbox" now includes nanoscale lasers and photodetectors, in addition to the nanoribbon waveguides.

"Ultimately, we would like to integrate all these individual components together into a photonic system-on-a-chip, so that many of photonic operations including light emission, routing and detection can be done on a much smaller scale," says Yang.
-end-
Berkeley Lab is a U.S. Department of Energy national laboratory located in Berkeley, California. It conducts unclassified scientific research and is managed by the University of California. Visit our Website at www.lbl.gov/.

DOE/Lawrence Berkeley National Laboratory

Related Semiconductor Articles from Brightsurf:

Blue phosphorus: How a semiconductor becomes a metal
Blue phosphorus, an atomically thin synthetic semiconductor, becomes metallic as soon as it is converted into a double layer.

A new method to measure optical absorption in semiconductor crystals
Tohoku University researchers have revealed more details about omnidirectional photoluminescence (ODPL) spectroscopy - a method for probing semiconducting crystals with light to detect defects and impurities.

Medical robotic hand? Rubbery semiconductor makes it possible
A medical robotic hand could allow doctors to more accurately diagnose and treat people from halfway around the world, but currently available technologies aren't good enough to match the in-person experience.

Laser allows solid-state refrigeration of a semiconductor material
A team from the University of Washington used an infrared laser to cool a solid semiconductor by at least 20 degrees C, or 36 F, below room temperature, as they report in a paper published June 23 in Nature Communications.

Scientists create smallest semiconductor laser
An international team of researchers announced the development of the world's most compact semiconductor laser that works in the visible range at room temperature.

Clemson researcher's novel MOF is potential next-gen semiconductor
Clemson professor Sourav Saha demonstrated a novel double-helical metal organic framework architecture in a partially oxidized form that conducts electricity, potentially making it a next-generation semiconductor.

A gold butterfly can make its own semiconductor skin
A nanoscale gold butterfly provides a more precise route for growing/synthesizing nanosized semiconductors that can be used in nano-lasers and other applications.

Scientists pioneer new generation of semiconductor neutron detector
In a new study, scientists have developed a new type of semiconductor neutron detector that boosts detection rates by reducing the number of steps involved in neutron capture and transduction.

Scientists see defects in potential new semiconductor
A research team has reported seeing, for the first time, atomic scale defects that dictate the properties of a new and powerful semiconductor.

Bending an organic semiconductor can boost electrical flow
Slightly bending semiconductors made of organic materials can roughly double the speed of electricity flowing through them and could benefit next-generation electronics such as sensors and solar cells, according to Rutgers-led research.

Read More: Semiconductor News and Semiconductor Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.