NIH awards grants to support biomedical research in space

September 01, 2010

The National Institutes of Health announced today that it has awarded the first new grants under the Biomedical Research on the International Space Station (BioMed-ISS) initiative, a collaborative effort between NIH and NASA. Using a special microgravity environment that Earth-based laboratories cannot replicate, researchers will explore fundamental questions about important health issues, such as how bones and the immune system get weak.

"Through this initiative, the NIH is proud to continue its longstanding partnership with NASA," said NIH Director Francis S. Collins, M.D., Ph.D. "We look forward to working with our NASA colleagues and other members of the ISS team to implement these unique experiments."

The National Laboratory at the ISS provides a virtually gravity-free -- or microgravity -- environment where the cellular and molecular mechanisms that underlie human diseases can be explored.

Scientists will conduct their experiments under a two-stage mechanism. The first is a ground-based preparatory phase to allow investigators to meet select milestones and technical requirements. The second is an ISS experimental phase that will include preparing the experiments for launch, working with astronauts to conduct them on the ISS, and performing subsequent data analyses on Earth.

"BioMed-ISS offers a novel opportunity for gaining scientific insights that would not otherwise be possible through ground-based means," said Stephen I. Katz, M.D., Ph.D., director of the NIH's National Institute of Arthritis and Musculoskeletal and Skin Diseases, and NIH liaison to NASA. "The beauty of this initiative is that it offers an unprecedented opportunity for benefitting human health on earth, while leveraging the American public's investment in the ISS."

NIH is hosting three rounds of competition for the BioMed-ISS initiative. The first round of grants for the ground-based phase -- totaling an estimated $1,323,000 -- has been awarded as follows:

Paola Divieti, M.D., Ph.D., Massachusetts General Hospital/Harvard Medical School, Boston: Weight-bearing activities contribute to the development and maintenance of bone mass, while weightlessness and immobility -- as experienced by the astronauts and bedridden and immobilized patients -- can result in bone loss and a weakened skeleton. Osteocytes, the most common type of bone cell, are believed to have gravity-sensing abilities. These cells play a key role in bone remodeling, a process that is vital to skeletal health. In studying osteocytes in a gravity-free environment, Divieti aims to uncover new therapeutic targets for osteoporosis and related bone diseases.

Millie Hughes-Fulford, Ph.D., Northern California Institute for Research and Education, San Francisco: The immune system, which protects the body against foreign substances, is suppressed in space. A reduction in the immune response also occurs in the elderly, who, like the astronauts, are at increased risk for infection. As a former astronaut, Hughes-Fulford aims to apply lessons learned from studies of immune cells in microgravity to a new model for investigating the loss of immune response in older women and men.

Declan McCole, Ph.D., University of California, San Diego: Excessive alcohol use is a leading lifestyle-related cause of death in the United States. A major factor in alcohol-related disease stems from the ability of alcohol to compromise the natural barrier function of cells in the gastrointestinal tract, increasing the movement of toxins from the intestines to other organs in the body. Using microgravity three-dimensional cell culture models, McCole plans to generate insights regarding the barrier properties of the intestines, and to explore how the absence of gravity affects alcohol's ability to diminish this barrier.
-end-
The NIH Institutes and Centers participating in BioMed-ISS include the National Cancer Institute, the National Center for Research Resources, the National Heart, Lung, and Blood Institute, the National Institute on Aging, the National Institute on Alcohol Abuse and Alcoholism, the National Institute of Arthritis and Musculoskeletal and Skin Diseases, the National Institute of Biomedical Imaging and Bioengineering, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, and the National Institute of Neurological Disorders and Stroke.

Information NIH and NASA activities can be found at http://www.niams.nih.gov/News_and_Events/NIH_NASA_Activities/default.asp.

The National Institutes of Health (NIH) -- The Nation's Medical Research Agency -- includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIH/National Institute of Arthritis and Musculoskeletal and Skin Diseases

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.