Metal-mining bacteria are green chemists

September 01, 2010

Microbes could soon be used to convert metallic wastes into high-value catalysts for generating clean energy, say scientists writing in the September issue of Microbiology.

Researchers from the School of Biosciences at the University of Birmingham have discovered the mechanisms that allow the common soil bacterium Desulfovibrio desulfuricans to recover the precious metal palladium from industrial waste sources.

Palladium is one of the platinum group metals (PGMs) which are among the most precious resources on earth. They possess a wide variety of applications, due to their exceptional chemical properties. PGMs are routinely used in many catalytic systems and are the active elements of autocatalytic converters that reduce greenhouse gas emissions.

Dr Kevin Deplanche who led the study explained why new ways of recovering PGMs are needed. "These metals are a finite resource and this is reflected in their high market value," he said. "Over the last 10 years, demand has consistently outstripped supply and so research into alternative ways of recovering palladium from secondary sources is paramount to ensuring future availability of this resource."

Previous work in the team's lab showed that Desulfovibrio desulfuricans was able to reduce palladium in industrial wastes into metallic nanoparticles with biocatalytic activity. Now, the precise molecules involved in the reduction process have been identified. Hydrogenase enzymes located on the surface membrane of the bacterium carry out the reduction of palladium, which results in the accumulation of catalytic nanoparticles. The bacterial cells coated with palladium nanoparticles are known as 'BioPd."

The group believes that BioPd has great potential to be used for generating clean energy. "Research in our group has shown that BioPd is an excellent catalyst for the treatment of persistent pollutants, such as chromium, that is used in the paint industry. BioPd could even be used in a proton exchange fuel cell to make clean electricity from hydrogen," said Dr Deplanche. "Our ultimate aim is to develop a one-step technology that allows for the conversion of metallic wastes into high value catalysts for green chemistry and clean energy generation," he said.
-end-


Microbiology Society

Related Palladium Articles from Brightsurf:

Well oriented
Polypropylene (PP) is one of the most widely used plastics in the world.

Palladium catalysts can do it
Palladium catalysts help synthesize key chemicals for many industries. However, direct reaction of two basic reagents, aryl halides and alkyllithium compounds, remains a challenge.

Scientists got one step closer to solving a major problem of hydrogen energy
A team of scientists from Far Eastern Federal University (FEFU) together with their colleagues from Austria, Turkey, Slovakia, Russia (MISIS, MSU), and the UK found a way to hydrogenate thin metallic glass layers at room temperature.

A chemist from RUDN developed a green catalyst for pharmaceutical and industrial chemistry
Many production facilities (e.g. plastic manufacturers, pharma companies, and others) use nanocatalysts that contain palladium--an expensive component that is not sustainably produced.

A new synthesis method for three-dimensional nanocarbons
A Nagoya University team has developed a new method of synthesis for three-dimensional nanocarbons, utilizing a catalytic reaction to connect benzene rings and create an eight-membered ring structure.

To make or to break: Novel reversible technique produces acyl fluoride using rare metal
Acyl fluorides are organic compounds that contain a fluorine atom in their structure.

Teaching old transition metals new tricks: Chemists activate palladium catalysis by light
In the production of compounds, chemists have the goal of finding strategies that are most selective and avoid waste products.

Manipulating ligands
Chemists at TU Dresden succeeded in fabricating surface-clean noble metal aerogels boosting the electrocatalysis performance by revisiting ligand chemistry.

A milestone in ultrafast gel fabrication
Alexander von Humboldt research fellow Ran Du opens up new space for both fundamental and application-orientated studies for noble metal gels and other systems at TU Dresden.

CCNY chemists develop safer hydrogenation processes
Safe and environmentally-friendly hydrogen gas on demand could be on the horizon following a new 'hydrogenation' chemical process in development at The City College of New York.

Read More: Palladium News and Palladium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.