Live imaging puts new light on stem cell division

September 01, 2010

A long-held assumption about asymmetrical division of stem cells has cracked. Researchers at the University of Oregon report that the mitotic spindle does not act alone -- that cortical proteins help to position a cleavage furrow in the right location.

Their discovery, described in the Sept. 2 issue of the journal Nature, provides a new window on how stem cells divide to produce two unequal daughter cells: one that lives on as a new stem cell and other, smaller cell, that adopts a new function, in this case as a neuron.

A three-member team focused on drosophila (fruit flies) neural stem cells known as neuroblasts, long known for dividing asymmetrically. What is learned in these flies often applies to many other mitotic (dividing) cells in other organisms such as mammals, including humans.

"This addresses a fundamental question in cell biology, namely how a cell knows where to place a cleavage furrow and thus divide in a symmetrical or asymmetrical fashion," said Clemens Cabernard, a postdoctoral fellow in the lab of Chris Doe, a Howard Hughes Medical Institute investigator in the UO Institute of Molecular Biology and director of the UO Institute of Neuroscience. Also on the team was Kenneth E. Prehoda, a UO biochemist and member of the Institute of Molecular Biology.

What the UO team found is that neuroblasts have two distinct dividing pathways that appear to work redundantly: one that is polarity induced and one that is spindle induced, Cabernard said.

Theories on cleavage furrow positioning during cell division have centered on the mitotic spindle, a network of fibers called microtubules.

One idea is that microtubules from spindle poles reach to the cortex, which delivers a positive or negative signal to determine the position of the cleavage ring. Another idea is that microtubule fibers from the center of the spindle reach out to the cortex resulting in the assembly of a cleavage ring (a complex consisting of several proteins, one of which is called myosin). A third model involves both. It was thought that asymmetrically dividing cells, such as drosophila neuroblasts, generate an asymmetric spindle and can position the cleavage ring in an asymmetric position, as opposed to symmetrically dividing cells that construct a symmetric spindle.

"We found a new mechanism in which a cleavage furrow can be placed at an asymmetric position," Cabernard said. "First, by way of a couple of experiments, we ruled out that the cleavage furrow is solely dependent on the position and symmetry/asymmetry of the mitotic spindle."

First researchers used mutants that lack astral microtubules, the microtubule fibers reaching out from the spindle poles towards the cortex and watched with live imaging what happens to the cleavage furrow. A cleavage furrow still occurred in an asymmetric position. This has been seen before but not using the same markers, Cabernard said.

Next, researchers removed the entire spindle from the picture with targeted drugs. Usually cells stop dividing in this condition, but a genetic trick allows these cells to initiate cell division despite the lack of a mitotic spindle. Surprisingly, researchers found, the proteins involved in constructing a cleavage furrow became localized in an asymmetric fashion and positioned a cleavage furrow in an asymmetric position -- pretty much like in wild-type neuroblasts. "Although cell division could not be completed, the dividing point was correctly marked," Cabernard said. "This told us that there must be a mechanism independent of the spindle."

In a third set of experiments, the research team rotated the mitotic spindle of neuroblasts using genetic mutants and thus changed the position of any spindle-derived signal. Interestingly, the team found that two cleavage furrows now formed, but only one coincided with the new position of the mitotic spindle, strongly supporting the hypothesis that a spindle independent signal also is used. Further experiments revealed that a cortical protein, required for proper neural stem cell divisions in mice and humans, is necessary for the asymmetric positioning of the cleavage furrow.

One of the marker proteins watched closely in the experiments was myosin. When a cell starts the division process, Cabernard said, the spindle is symmetrical but the myosin markers segregated toward the basal side -- and is localized in an asymmetric fashion -- which becomes smaller and transforms into a neuron upon cell division.

Although this research addresses a basic question in cell biology, the findings have important implications. Asymmetric cell division in fly or human stem cells is important to generate a number of differentiating cells while retaining a stem cell as a back up copy.

Previous work by Cabernard and Doe showed that if drosophila neuroblasts divide in a symmetric manner, which doesn't normally happen, two neuroblasts are generated. Thus, the researchers said, it is crucial for a stem cell to know where to place a cleavage furrow to produce all the required neurons. Similar results have been observed in neural stem cells in mice.
-end-
The National Institutes of Health, American Heart Association, Swiss National Science Foundation and Howard Hughes Medical Institute supported the research.

About the University of Oregon

The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of the 63 leading public and private research institutions in the United States and Canada. The UO is one of only two AAU members in the Pacific Northwest.

Sources: Clemens Cabernard, postdoctoral researcher, 541-346-3041, clemens@uoregon.edu; and Chris Doe, professor of biology, 541-346-4877, cdoe@uoregon.edu

Links:
Doe, Institute of Molecular Biology: http://www.molbio.uoregon.edu/facres/doe.php
Doe, Institute of Neuroscience: http://www.neuro.uoregon.edu/ionmain/htdocs/faculty/doe.html
UO biology department: http://biology.uoregon.edu/

University of Oregon

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.