Nav: Home

Bacterial membrane vesicles can cause preterm birth

September 01, 2016

Approximately 20-30% of women carry bacteria called group B streptococcus (GBS) in their vagina or rectum. In most cases, these bacteria cause no problems, but GBS has been linked to complications during pregnancy, including pre-term delivery.

A study published on September 1st in PLOS Pathogens reports that GBS produces membrane-bound vesicles containing bacterial factors that can attack the host tissue. In mice, the study shows, these vesicles can move from the vagina to the uterus and cause inflammation of the membranes surrounding the fetus. When injected directly into the amniotic cavity of mice, these vesicles can induce preterm and still births.

Membrane-bound vesicles (MVs) loaded with toxins, immune-modulators, and other bacterial factors, contribute to the survival and virulence (the ability to cause disease) of many pathogenic bacteria. Whether GBS produces MVs was not known. However, because in pregnant women who carry GBS and deliver prematurely, bacterial infection is rarely found in the womb, Anirban Banarjee, from the Indian Institute of Technology Bombay, and colleagues hypothesized that if GBS produces MVs, they might move up to the womb during pregnancy and cause tissue damage at interface between mother and fetus.

To test this, the researchers started by growing GBS in liquid media. When they removed the bacteria and examined the remaining liquid by electron microscopy, they found numerous spherical structures. Zooming in on the surface of growing bacteria, they detected vesicles that were just budding off the bacterial cell, confirming that GBS produces MVs. They next examined the protein content of the MVs and identified 8 bacterial proteins, all with predicted properties of virulence factors that can attack the human host and cause disease.

When the researchers mixed MVs and cells of human origin, they found that the MVs can invade and kill these cells, suggesting that GBS MVs are toxic to the human host. The researchers then deposited the MVs without the bacteria into mouse vagina and hours later found them throughout the uterus and in the developing fetus, indicating that MVs can indeed travel up the birth canal. Adding MVs to mouse chorio-decidual membrane (which is found at the interface between mother and fetus) caused collagen degradation, reducing the elasticity and weakening the mechanical properties of the membrane.

When the researchers injected MVs directly into the amniotic sac (the fluid-filled cavity surrounding the embryo) of pregnant mice, they observed that 24 hours later the tissue of the interface between mother and fetus was severely disrupted, with broken collagen fibers, hallmarks of inflammation, and signs of extensive cell death. To test whether these changes could lead to pre-term birth, the researchers carefully monitored females whose amniotic sacs had been injected with MVs at day 14.5 of pregnancy (a full-term mouse pregnancy lasts 19 days). Approximately 60% of the fetuses were born prematurely (by day 18 of pregnancy), compared with only 10% of pups following control injection with saline. Along with preterm birth, the researchers observed an increased frequency of fetal death in utero, and that the pups born to MV injected mothers were too small and some had abnormal morphology. Collectively, these results suggest that GBS MVs can cause preterm birth and fetal injury.

Discussing their results, the researchers emphasize the finding that MVs alone could induce features resembling clinical chorio-amnionitis in the mice. "Clinically", they say, "this observation is highly relevant as 50-80% women with chorio-amnionitis do not have bacteria in their amniotic fluid or the decidual tissue". Based on their study, they hypothesize that "MVs secreted by the pathogens residing in lower genital tract may be responsible for cases with unexplained chorio-amnionitis".

Acknowledging the gap between experimental results in mice following direct injection of MVs into the amnion sac and human pathogenesis, the researchers nevertheless suggest that their findings "provide a novel insight into how GBS while simply sitting in the vagina can orchestrate events at the fetal membrane leading to premature birth". Because MVS are not susceptible to antibiotics, the researchers speculate that instead "new drugs that prevent vesicle production may [...] be a viable therapeutic option to prevent GBS mediated preterm birth".
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Pathogens: http://dx.plos.org/10.1371/journal.ppat.1005816

Please contact plospathogens@plos.org if you would like more information.

Funding: MVS and SB acknowledge University Grants Commission (UGC, Govt. of India), AA acknowledges Council of Scientific and Industrial Research (CSIR, Govt. of India) and KGK acknowledges Department of Science and Technology (DST, Govt. of India) for fellowships. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Citation: Surve MV, Anil A, Kamath KG, Bhutda S, Sthanam LK, Pradhan A, et al. (2016) Membrane Vesicles of Group B Streptococcus Disrupt Feto-Maternal Barrier Leading to Preterm Birth. PLoS Pathog 12(9): e1005816. doi:10.1371/journal.ppat.1005816

PLOS

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".