Nav: Home

Direct observation of desorption of a melt of long polymer chains

September 01, 2020

In our everyday life it's not uncommon to see the same material in different states. Take for example water: it's a liquid at ambient temperature, we can convert into ice when cooled below 0°C and it becomes a gas when heated above 100°C. The passages between these different states of matter are called phase transitions.

Phase transitions are the expression of the organization and interactions of molecules and atoms inside materials, and because of this they have been largely studied by physicists, chemists, biologists, and many more.

Some phase transitions, though predicted by theory, remain elusive and their existence cannot be verified with experiments, because of the harsh conditions in which they occur. This is the case of the adsorption/desorption transition of polymers.

Polymers are long molecules made up by the repetition - often more than thousand times -

of the same unit, called monomer. This particular structure brings up a series of interesting properties. For example, a polymer molecule can strongly adhere onto a surface even if the interaction between one single monomer and the surface is very weak: l'union fait la force. In fact, in order to separate the whole molecule from the surface, one would have to remove one by one all the monomers that are weakly attached, which is very unlikely to occur. Polymer chains are those considered irreversibly adsorbed, that is, a polymer chain is supposed to stick on a surface, for an extremely long time, basically forever.

Theorists have proposed that the adsorbed state is, instead, transitory and, when heated well above room temperature, polymer molecules should desorb and leave the surface. This would be the adsorption/desorption transition.

Till now, however, no one could verify these ideas, because the temperatures where this phase transition should occur are very high, and the material degrades before, eventually, desorbing.

Now, writing in Nature Communication Simone Napolitano (Laboratory of Polymer and Soft Matter Dynamics, ULB) and his collaborators, Xavier Monnier and Daniele Cangialosi, from the Donostia International Physics Center and Centro de Física de Materiales of San Sebastián (Spain) have been able to experimentally access the adsorption/desorption transition.

Combining the expertise of Cangialosi in phase transitions and that of Napolitano on adsorption, the team has used a new technique called fast scanning calorimetry, that permits to measure the heat exchanged by a material while the temperature is varied very rapidly. The technique can bring the polymer molecules from room temperature to 400 °C within a fraction of second, and within this short interval the material does not have time to degrade.

By studying this phenomenon, Monnier and coworkers have observed that a very tiny quantity of heat is released from the polymer chains when they desorb from a surface, which permitted to classify the adsorption/desorption as a first order phase transition.

This is similar to what happens to ice when we put it on the table. At low temperature, the molecules stay together thanks to interactions which keep the material in the solid state. By heating above 0°C the interactions start to fade, which corresponds to a heat exchange. The same occurs to polymer chains when they desorb.

Emmanouil Glynos (Foundation for Research and Technology-Hellas), expert of polymer physics commented :

"Monnier et al have been able to observe desorption by heating a thin polymer layer, a neat result which was not achieved before. Fast calorimetry permitted them to fully characterize this elusive phase transition, this is an incredible advancement of the state of the art of soft matter physics".

In addition to the tremendous advancement of the study of phase transitions, this study opens to new methods to tailor the properties of nanomaterials as smart coatings, flexible electronics and more. The properties of these innovative systems, in fact, depend on how many molecules are adsorbed, and the authors anticipate that by adequately mastering the adsorption/desorption transition it will be possible to fabricate better performing and more durable materials.
-end-


Université libre de Bruxelles

Related Polymer Articles:

Impurities enhance polymer LED efficiencies
New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.
Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.
Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.
New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.
Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.
Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.
New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.
New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.
New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.
Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.
More Polymer News and Polymer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.