Managing data flow boosts cyber-physical system performance

September 01, 2020

Researchers from North Carolina State University have developed a suite of algorithms to improve the performance of cyber-physical systems - from autonomous vehicles to smart power grids - by balancing each component's need for data with how fast that data can be sent and received.

"Cyber-physical systems integrate sensors, devices, and communications tools, allowing all of the elements of a system to share information and coordinate their activities in order to accomplish goals," says Aranya Chakrabortty, co-author of a paper on the new algorithms and a professor of electrical and computer engineering at NC State. "These systems have tremendous potential - the National Science Foundation refers to them as 'enabling a smart and connected world' - but these systems also pose challenges.

"Specifically, the physical agents in a system - the devices - need a lot of communication links in order to function effectively. This leads to large volumes of data flowing through the communication network, which causes routing and queuing delays. These delays can cause long waiting times for the agents to take action, thereby degrading the quality of the system. In other words, there's so much data, being passed through so many links, that a system may not be able to accomplish its established goals - the lag time is just too long."

This creates a dilemma. Reducing communication can hurt the quality of the system's performance, because each element of the system will be operating with less information. On the other hand, reducing communication means that each element of the system would be able to get that information more quickly.

"So, it's all a trade-off," Chakrabortty says. "The right balance needs to be struck between all three variables - namely, the right amount of communication sparsity, the optimal delay, and the best achievable performance of the agents. Striking this fine balance to carry out the mission in the best possible way while also ensuring safe and stable operation of every agent is not easy. This is where our algorithms come in."

Chakrabortty and graduate student Nandini Negi developed three algorithms that, taken together, reduce the overall number of data requests from each node in a system, but ensure that each node receives enough information, quickly enough, to achieve system goals.

"There is no one-size-fits-all solution that will apply to every cyber-physical system," Negi says. "But our algorithms allow users to identify the optimal communications solution for any system."
The paper, "Sparsity-Promoting Optimal Control of Cyber-Physical Systems over Shared Communication Networks," is published in the journal Automatica. Negi is first author of the paper. The work was funded in part by the National Science Foundation under grant number 1544871.

North Carolina State University

Related Algorithms Articles from Brightsurf:

A multidisciplinary policy design to protect consumers from AI collusion
Legal scholars, computer scientists and economists must work together to prevent unlawful price-surging behaviors from artificial intelligence (AI) algorithms used by rivals in a competitive market, argue Emilio Calvano and colleagues in this Policy Forum.

Students develop tool to predict the carbon footprint of algorithms
Within the scientific community, it is estimated that artificial intelligence -- otherwise meant to serve as a means to effectively combat climate change -- will become one of the most egregious CO2 culprits should current trends continue.

Machine learning takes on synthetic biology: algorithms can bioengineer cells for you
Scientists at Lawrence Berkeley National Laboratory have developed a new tool that adapts machine learning algorithms to the needs of synthetic biology to guide development systematically.

Algorithms uncover cancers' hidden genetic losses and gains
Limitations in DNA sequencing technology make it difficult to detect some major mutations often linked to cancer, such as the loss or duplication of parts of chromosomes.

Managing data flow boosts cyber-physical system performance
Researchers have developed a suite of algorithms to improve the performance of cyber-physical systems - from autonomous vehicles to smart power grids - by balancing each component's need for data with how fast that data can be sent and received.

New theory hints at more efficient way to develop quantum algorithms
A new theory could bring a way to make quantum algorithm development less of an accidental process, say Purdue University scientists.

AI as good as the average radiologist in identifying breast cancer
Researchers at Karolinska Institutet and Karolinska University Hospital in Sweden have compared the ability of three different artificial intelligence (AI) algorithms to identify breast cancer based on previously taken mammograms.

Context reduces racial bias in hate speech detection algorithms
When it comes to accurately flagging hate speech on social media, context matters, says a new USC study aimed at reducing errors that could amplify racial bias.

Researchers discover algorithms and neural circuit mechanisms of escape responses
Prof. WEN Quan from School of Life Sciences, University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) has proposed the algorithms and circuit mechanisms for the robust and flexible motor states of nematodes during escape responses.

Lightning fast algorithms can lighten the load of 3D hologram generation
Tokyo, Japan - Researchers from Tokyo Metropolitan University have developed a new way of calculating simple holograms for heads-up displays (HUDs) and near-eye displays (NEDs).

Read More: Algorithms News and Algorithms Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to