Keeping the beat - it's all in your brain

September 01, 2020

How do people coordinate their actions with the sounds they hear? This basic ability, which allows people to cross the street safely while hearing oncoming traffic, dance to new music or perform team events such as rowing, has puzzled cognitive neuroscientists for years. A new study led by researchers at McGill University is shining a light on how auditory perception and motor processes work together.

Keeping the beat - it takes more than just moving or listening well

In a recent paper in the Journal of Cognitive Neuroscience, the researchers, led by Caroline Palmer, a professor in McGill's Department of Psychology, were able to identify neural markers of musicians' beat perceptions. Surprisingly, these markers did not correspond to the musician's ability to either hear or produce a beat - only to their ability to synchronize with it.

"The authors, as performing musicians, are familiar with musical situations in which one performer is not correctly aligned in time with fellow performers - so we were interested in exploring how musician's brains respond to rhythms. It could be that some people are better musicians because they listen differently or it could be that they move their bodies differently," explains Palmer, the Canada Research Chair in Cognitive Neuroscience of Performance, and the senior author on the paper.

"We found that the answer was a match between the pulsing or oscillations in the brain rhythms and the pulsing of the musical rhythm - it's not just listening or movement. It's a linking of the brain rhythm to the auditory rhythm."

Super-synchronizers - an exception or a learnable skill?

The researchers used electroencephalography (EEGs involve placing electrodes on the scalp to detect electrical activity in the brain) to measure brain activity as participants in the experiment, all of them experienced musicians, synchronized their tapping with a range of musical rhythms they were hearing. By doing so they were able to identify neural markers of musicians' beat perceptions that corresponded to their ability to synchronize well.

"We were surprised that even highly trained musicians sometimes showed reduced ability to synchronize with complex rhythms, and that this was reflected in their EEGs," said co-first authors Brian Mathias and Anna Zamm, both PhD students in the Palmer lab. "Most musicians are good synchronizers; nonetheless, this signal was sensitive enough to distinguish the "good" from the "better" or "super-synchronizers", as we sometimes call them."

It's not clear whether anyone can become a super-synchronizer, but according to Palmer, the lead researcher, it may be possible to improve ones ability to synchronize.

"The range of musicians we sampled suggests that the answer would be yes. And the fact that only 2-3 % of the population are 'beat deaf' is also encouraging. Practice definitely improves your ability and improves the alignment of the brain rhythms with the musical rhythms. But whether everyone is going to be as good as a drummer is not clear."
-end-
About this study

"Rhythm Complexity Modulates Behavioral and Neural Dynamics During Auditory-Motor Synchronization" by Brian Mathias and Anna Zamm et al in the Journal of Cognitive Neuroscience

DOI: 10.1162/jocn_a_01601

The research was funded by

An NSF Graduate Fellowship to B. Mathias, a PBEEE Graduate award from FRQNT to A. Zamm, an NSERC-USRA award to P. Gianferrara, and NSERC Grant 298173 and a Canada Research Chair to C. Palmer.

About McGill University

Founded in Montreal, Quebec, in 1821, McGill is a leading Canadian post-secondary institution. It has two campuses, 11 faculties, 13 professional schools, 300 programs of study and over 40,000 students, including more than 10,200 graduate students. McGill attracts students from over 150 countries around the world, its 12,800 international students making up 31% per cent of the student body. Over half of McGill students claim a first language other than English, including approximately 19% of our students who say French is their mother tongue.

Contact:

Katherine Gombay
Katherine.gombay@mcgill.ca
1-514-717-2289

McGill University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.