Study reveals seismic shift in methods used to track earthquakes

September 02, 2009

The team, led by scientists from the University of Edinburgh, says that the new method, which uses data collected from earthquakes, potentially allows the Earth's seismic activity to be mapped more comprehensively.

Scientists currently monitor underground movements, such as earthquakes and nuclear tests, using seismometers - instruments that measure the motion of those events at the Earth's surface. This helps to indicate where they took place.

Now, by analysing the seismic waves from two different earthquakes, the team has been able to simulate the seismic waves from one of the earthquakes as if they were recorded by a seismometer at the location of the second.

The discovery allows earthquakes themselves to be used as virtual seismometers that record passing waves from tremors that happen elsewhere in the world.

Using earthquakes in this way substantially increases the number of locations that could be used to detect seismic activity. And since earthquakes occur deep inside the Earth, using them also allows scientists to monitor seismic activity from far deeper than previously possible.

The research, published in Nature Geoscience, was carried out in collaboration with the British Geological Survey and Utrecht University.

Andrew Curtis, Professor of Mathematical Geoscience at the University of Edinburgh, said: "This turns the way we listen to seismic movements on its head. By using earthquakes themselves as virtual microphones that record the sound of the Earth's internal movements, we can listen to the Earth's stretching and cracking from directly within its most interesting, dynamic places."

Dr Brian Baptie, Seismology Team Leader at the British Geological Survey, said: "This discovery shows how we can measure strains deep inside the Earth and helps improve our understanding of the processes driving earthquake activity."
-end-
For further information, please contact:

Prof. Andrew Curtis, School of Geosciences, tel +44 131 650 8515; mobile +44 786 654 6227; email Andrew.Curtis@ed.ac.uk

Norval Scott, Press and PR Office, tel 0131 650 2246; mobile +7791 355 809; email norval.scott@ed.ac.uk

Prof. Roel Snieder, W M Keck Distinguished Professor of Basic Exploration Science, Colorado School of Mines, tel. +1 303 273 3456; email rsnieder@mines.edu

University of Edinburgh

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.