Hemophilia research gets NIH boost to a tune of $5.5 million

September 02, 2011

At a time when research funding is hard to come by, a University of Central Florida and University of Florida partnership has landed almost $5.5 million in National Institutes of Health highly competitive grants for hemophilia research.

The first grant worth $3.6 million over five years is aimed at determining whether a green technique pioneered at UCF will help make treatment of hemophilia A more effective. The second grant worth $2 million for four years is for similar research for hemophilia B. The grants were awarded to UCF and UF, which applied for funding jointly thanks to a long-time collaboration between scientists at both institutions. Duke University also is a partner for the research on hemophilia A.

Hemophilia is an incurable bleeding condition that affects about 400,000 adults and children worldwide. Hemophilia is characterized by defects in the gene that produces proteins required for blood to clot. Hemophilia A, the most common type of hemophilia, is characterized by prolonged or spontaneous bleeding, especially in the muscles, joints or internal organs.

Treating hemophilia is challenging and dangerous because many patients suffer fatal allergic reactions to the protein that doctors use to facilitate blood clotting. The scientists are working on a way to make patients resistant to any deadly allergic reactions caused by the protein.

Treatments with the protein are also expensive. They must be provided in a hospital setting under supervision, and they can cost up to $1 million over a patient's lifetime because of the required hospital stays and blood transfusions. Average annual treatment costs are $60,000 to $150,000, according to the National Hemophilia Foundation.

"I am confident we will achieve success sooner than you think," said UCF Professor Henry Daniell. "We are hopeful that this technique will potentially save thousands of lives."

The researchers are using genetically modified plants to encapsulate a tolerance-inducing protein within plant cells so the protein could be ingested and safely travel through the stomach before being released into the small intestines, where the immune system can act on it.

In mice with hemophilia B, when blood clotting factor IX bio-encapsulated within plant cells was delivered to the gut, it prevented fatal anaphylactic shock and complex immune reactions. The new NIH funding, which came through the National Lung, Blood and Heart Institute, will help propel the research to determine if the technique can work in other models and potentially to clinical trials thereafter.

"The collaboration has an excellent chance of developing treatments that improve the lives of people with hemophilia and, at the same time, help lower health care costs," said Roland Herzog, a professor at UF.

After Daniell mentored Herzog at Auburn University, Herzog went on to develop his career. He has received multiple awards for his research in hematology including several NIH grants, a career development award from the National Hemophilia Foundation, an outstanding investigator award from the American Society of Gene Therapy and a Bayer Hemophilia Award.

Both researchers are hopeful that if future research bears out, this approach would be much safer and potentially deliver less expensive treatments to thousands who live with this disease.

While the approach is cutting edge, the NIH funding has come after Daniell and Herzog's research was featured last year in Proceedings of the National Academy of Sciences, a highly acclaimed scientific journal. Bayer Healthcare of Germany, the world's largest funder of hemophilia research, also gave Daniell a $200,000 grant in 2010 for research exploring the novel concept.

Daniell is conducting similar research on a polio vaccine funded by the Bill and Melinda Gates Foundation and on diabetes funded by the Juvenile Diabetes Research Foundation.

"The clinical translation of our work is closely tied with other projects in our lab, and all are showing promising results. So I am very hopeful that this concept and technology will move forward soon," Daniell said.
-end-
Daniell joined UCF's Burnett School for Biomedical Sciences, a part of the College of Medicine, in 1998. His research led to the formation of the university's first biotechnology company. He has published more than 200 academic research papers, speaks at conferences around the world and has received many prestigious honors for his pioneering work. Daniell is only the 14th American in the last 222 years to be elected to the Italian National Academy of Sciences. He also is a fellow of the American Association for the Advancement of Sciences.

UCF Stands For Opportunity --The University of Central Florida is a metropolitan research university that ranks as the second largest in the nation with more than 56,000 students. UCF's first classes were offered in 1968. The university offers impressive academic and research environments that power the region's economic development. UCF's culture of opportunity is driven by our diversity, Orlando environment, history of entrepreneurship and our youth, relevance and energy. For more information visit http://news.ucf.edu

University of Central Florida

Related Protein Articles from Brightsurf:

The protein dress of a neuron
New method marks proteins and reveals the receptors in which neurons are dressed

Memory protein
When UC Santa Barbara materials scientist Omar Saleh and graduate student Ian Morgan sought to understand the mechanical behaviors of disordered proteins in the lab, they expected that after being stretched, one particular model protein would snap back instantaneously, like a rubber band.

Diets high in protein, particularly plant protein, linked to lower risk of death
Diets high in protein, particularly plant protein, are associated with a lower risk of death from any cause, finds an analysis of the latest evidence published by The BMJ today.

A new understanding of protein movement
A team of UD engineers has uncovered the role of surface diffusion in protein transport, which could aid biopharmaceutical processing.

A new biotinylation enzyme for analyzing protein-protein interactions
Proteins play roles by interacting with various other proteins. Therefore, interaction analysis is an indispensable technique for studying the function of proteins.

Substituting the next-best protein
Children born with Duchenne muscular dystrophy have a mutation in the X-chromosome gene that would normally code for dystrophin, a protein that provides structural integrity to skeletal muscles.

A direct protein-to-protein binding couples cell survival to cell proliferation
The regulators of apoptosis watch over cell replication and the decision to enter the cell cycle.

A protein that controls inflammation
A study by the research team of Prof. Geert van Loo (VIB-UGent Center for Inflammation Research) has unraveled a critical molecular mechanism behind autoimmune and inflammatory diseases such as rheumatoid arthritis, Crohn's disease, and psoriasis.

Resurrecting ancient protein partners reveals origin of protein regulation
After reconstructing the ancient forms of two cellular proteins, scientists discovered the earliest known instance of a complex form of protein regulation.

Sensing protein wellbeing
The folding state of the proteins in live cells often reflect the cell's general health.

Read More: Protein News and Protein Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.