Nav: Home

ORNL licenses rare earth magnet recycling process to Momentum Technologies

September 02, 2016

The Department of Energy's Oak Ridge National Laboratory and Momentum Technologies have signed a non-exclusive licensing agreement for an ORNL process designed to recover rare earth magnets from used computer hard drives.

The patent-pending process developed as part of DOE's Critical Materials Institute is designed to economically recover large amounts of magnets made using neodymium--a rare earth element that is mined outside the United States. The permanent magnets are the most powerful on earth, and used in everything from computer hard drives and cell phones to clean energy technologies such as electric vehicles and wind turbines.

Currently, about 35 percent of used hard drives are shredded in the U.S. due to data security concerns. Recycling those drives could result in the recovery of about 1,000 metric tons of magnet material per year, said Timothy McIntyre, project lead and program manager in ORNL's Electrical and Electronics Systems Research Division.

ORNL's highly automated process for recovering magnets employs a unique system to sort and align hard drives on a conveyer for processing. The method uses a mapping station with barcode scanning and a coordinate measuring machine to populate a database of each make of hard drive so they may be positioned for correct robotic disassembly.

The process is designed to recover the magnets, their permalloy brackets, circuit boards, aluminum, and steel, while automatically destroying data storage media to ensure security.

The magnets may then be directly reused by hard drive manufacturers or in motor assemblies, used in other applications through resizing or reshaping, or processed back to rare earth metal. The recycling method can be adapted to target other consumer goods containing rare earth magnets, such as used electric motors, appliances, and heating and air conditioning systems.

Dallas-based Momentum Technologies is focused on extraction of rare earth elements and other materials from hard drives for recycling and direct reuse.

Momentum holds a separate license for ORNL's membrane extraction technology, which uses a combination of hollow fiber membranes, organic solvents and neutral extractants to selectively recover rare earth elements such as neodymium, dysprosium and praseodymium.

"Working collectively with the nation's brightest scientific minds we can now provide a solution to some of the most complex problems in the rare earth element supply chain," said Preston Bryant, Momentum's CEO. "Bringing together these CMI technologies allows us to create a sustainable business model, something that many rare earth companies struggle to achieve."

"Hard disk drives are the second-biggest use of neodymium magnets, and they are the most readily available source for recycling," said CMI Director Alex King. "This technology overcomes one of the biggest challenges to cost-effective recovery of magnets from them, and we are delighted to be working with Momentum Technologies to commercialize it."
-end-
ORNL is managed by UT-Battelle for DOE's Office of Science, the single largest supporter of basic research in the physical sciences in the United States. DOE's Office of Science is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/.

About the Critical Materials Institute:



The Critical Materials Institute is a Department of Energy Innovation Hub led by the U.S. Department of Energy's Ames Laboratory and supported by DOE's Office of Energy Efficiency and Renewable Energy's Advanced Manufacturing Office. CMI seeks ways to eliminate and reduce reliance on rare earth metals and other materials critical to the success of clean energy technologies.

DOE/Oak Ridge National Laboratory

Related Recycling Articles:

How the cellular recycling system is put on hold while cells divide
Research involving several teams at the Babraham Institute, Cambridge, UK, has shown that cellular recycling (autophagy) is repressed during the process of cell division, and how repression of autophagy during mitosis utilises a different master regulator.
Rethinking the science of plastic recycling
A multi-institutional collaboration reports a catalytic method for selectively converting discarded plastics into higher quality products.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Molecular biophysics -- the ABC of ribosome recycling
Ribosomes, the essential machinery used for protein synthesis is recycled after each one round of translation.
Biochemistry: Versatile recycling in the cell
Ribosomes need regenerating. This process is important for the quality of the proteins produced and thus for the whole cell homeostasis as well as for developmental and biological processes.
Algae-killing viruses spur nutrient recycling in oceans
Scientists have confirmed that viruses can kill marine algae called diatoms and that diatom die-offs near the ocean surface may provide nutrients and organic matter for recycling by other algae, according to a Rutgers-led study.
Improving heat recycling with the thermodiffusion effect
In a study recently published in EPJ E, researchers find that the absorption of water vapour within industrial heat recycling devices is directly tied to a physical process known as the thermodiffusion effect.
Awareness of product transformation increases recycling
A plastic bottle becomes a jacket, an aluminum can a bicycle.
Clean and effective electronic waste recycling
E-waste recycling is far below what it should be to reduce its impact on the environment and human health simply because it is not economically feasible.
New 'blue-green' solution for recycling world's batteries
Rice University materials scientists demonstrate an environmentally friendly solution to remove valuable cobalt and lithium metals from spent lithium-ion batteries.
More Recycling News and Recycling Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

Breaking Bongo
Deep fake videos have the potential to make it impossible to sort fact from fiction. And some have argued that this blackhole of doubt will eventually send truth itself into a death spiral. But a series of recent events in the small African nation of Gabon suggest it's already happening.  Today, we follow a ragtag group of freedom fighters as they troll Gabon's president - Ali Bongo - from afar. Using tweets, videos and the uncertainty they can carry, these insurgents test the limits of using truth to create political change and, confusingly, force us to ask: Can fake news be used for good? This episode was reported and produced by Simon Adler. Support Radiolab today at Radiolab.org/donate.