Nav: Home

A new technique opens up advanced solar cells

September 02, 2016

In a photovoltaic cell, light generates opposite charges in the active layer. The charges must then be separated as quickly as possible to keep them from recombining. Positive charges are driven by a built-in electric field to one metallic contact, while negative charges migrate in the opposite direction to another electrode. Using a unique ultra-fast spectroscopic technique, scientists have now been able to track the fate of charged pairs in an advanced type of solar cells currently under intense research. The work is published in Nature Communications.

Natalie Banerji (University of Fribourg) collaborated with Jacques Moser (EPFL) and Natalie Stingelin (Imperial College) and used ultrafast time-resolved electroabsorption spectroscopy (TREAS) to follow the fate of charge pairs photogenerated in polymer:fullerene blends used in plastic solar cells. TREAS has been developed in Moser's lab during the last three years. It allows real-time measurements of the separation distance of charges generated by light in the active layer of a photovoltaic solar cell.

The technique relies on the optical probing of the effective electric field experienced by a material. An external field is applied to the device and affects the absorption spectrum of materials that make up its photoactive layer. The effect is known as "electroabsorption" or the "Stark effect".

An ultrashort laser pulse then generates charges. These begin to separate, inducing a counter electrical field that opposes the externally applied one. As a result, a decrease of the amplitude of the electroabsorption signal can be detected in real time with pico- to femto-second resolution.

The data from the study create a better understanding of the mechanisms of light-induced charge separation in this type of photovoltaics, as well as of the effect of the morphology of the polymer:fullerene blend, which is necessary for designing more efficient solar energy converters.
This work represents a collaboration between EPFL, the University of Fribourg, and Imperial College London. It was funded by the Swiss National Science Foundation (SNSF), the University of Fribourg, NCCR- MUST, the European Research Council (ERC) Starting Independent Researcher Fellowship, King Abdullah University of Science and Technology.


Martina Causa', Jelissa De Jonghe-Risseb, Mariateresa Scarongella, Jan C. Brauer, Ester Buchaca-Domingo, Martin Heeney, Jacques-E. Moser, Natalie Stingelin, Natalie Banerji. The Fate of Charge Pairs in Polymer:Fullerene Blends with Controlled Phase-Morphology. Nature Communications 02 September 2016. DOI: 10.1038/NCOMMS12556.

Ecole Polytechnique Fédérale de Lausanne

Related Solar Cells Articles:

Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite.
Printable solar cells just got a little closer
A University of Toronto Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper.
A big nano boost for solar cells
Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed.
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
Throwing new light on printed organic solar cells
Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Toward 'greener,' inexpensive solar cells
Solar panels are proliferating across the globe to help reduce the world's dependency on fossil fuels.
A new technique opens up advanced solar cells
Using a novel spectroscopic technique, EPFL scientists have made a much-needed breakthrough in cutting-edge photovoltaics.
OU physicists developing new systems for next generation solar cells
University of Oklahoma physicists are developing novel technologies with the potential to impact utility-scale energy generation, increase global energy capacity and reduce dependence on fossil fuels by producing a new generation of high efficiency solar cells.

Related Solar Cells Reading:

PHYSICS OF SOLAR CELLS, THE (Properties of Semiconductor Materials)
by Jenny Nelson (Author)

The Physics of Solar Cells: Perovskites, Organics, and Photovoltaic Fundamentals
by Juan Bisquert (Author)

Physics of Solar Cells: From Basic Principles to Advanced Concepts (No Longer Used)
by Peter Würfel (Author), Uli Würfel (Author)

Build Your Own Solar Panel: Generate Electricity from the Sun.
by Phillip Hurley (Author)

Materials Concepts For Solar Cells (Energy Futures)
by Thomas Dittrich (Author)

Solar Cells: Operating Principles, Technology, and System Applications (Prentice-Hall series in solid state physical electronics)
by Martin A. Green (Author)

The Complete Guide About Solar Energy: A Practical Beginners Guide To Solar Panels, Cells and Electricity
by Russel Hobbs (Author)

Principles of Solar Cells, LEDs and Related Devices: The Role of the PN Junction
by Adrian Kitai (Author)

Build A Solar Hydrogen Fuel Cell System
by Phillip Hurley (Author)

Solar Cells and Energy Materials
by De Gruyter

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.