Nav: Home

X chromosome: The structure makes the difference

September 02, 2016

In many species, the sex chromosomes are unequally distributed: in humans as well as in the model organism Drosophila melanogaster male cells only possess one X chromosome, unlike female cells, which contain two Xs. Male fruit flies compensate for this short-coming by doubling the activity of their single X chromosome. This vital process is controlled by the enzyme complex known as DCC (dosage compensation complex). "How this regulator distinguishes the X chromosome from all the other chromosomes has remained unsolved for a long time", says LMU biologist Professor Peter Becker from the Biomedical Center (BMC) at the LMU. Becker's team has now reported on an important conceptual and methodological breakthrough: the researchers demonstrate that a key role in the process is played by the fine detail of DNA shape. In addition, they have also identified the part of the enzyme complex that binds to the X chromosome. The insights gained from Drosophila are not only important for understanding the gene regulation in flies, but also illustrate fundamental mechanisms that affect all life forms in similar ways. The scientists have reported their results in the prestigious journal Nature.

Some 300 binding sites for the DCC enzyme complex to the X chromosome are known to date. From their DNA sequences, researchers have calculated the recognition sequence (known as the consensus sequence), in which each position is occupied by the particular DNA building block, which occurs most frequently in comparison with all binding sites. "The problem is that the consensus sequence signature that can be robustly identified at most DCC binding sites is also present some thousands of times on all other chromosomes", states Becker. "For this reason, we have previously been unable to predict whether a particular DNA sequence is actually a functional DCC binding site or not."

A novel strategy Becker describes as 'genome-wide biochemical analysis' has now provided a major step forward. The researchers were able to demonstrate that one specific building block from the DCC regulator - the MSL2 protein - is sufficient to reliably bind the consensus sequence. Furthermore, the MSL2 protein actually possesses two DNA binding domains, of which one binds to a DNA sequence, which extends the previously known consensus sequence. "We called this new signature 'PionX', because it turns out that these binding sites represent the first DCC contact points to the X chromosome. There are, however, some 2,700 sequences in the fly genome that resemble the PionX signature a lot, of which only 57 function as genuine MSL2 binding sites", relates Becker.

"The decisive breakthrough was achieved by BMC bioinformaticians, first and foremost Tobias Straub, who calculated how the sequence of the base pairs affected the intricate structure of the DNA, also known as 'DNA shape'", states Becker. The researchers identified a particular shape shared by PionX sequences that is preferably recognised by the MSL2 protein. This structure makes the vital difference: it distinguishes the binding sites on the X chromosome from all others, enabling a selective interaction and regulation by the dosage compensation complex. "Our work has decisively advanced the understanding of chromosome-wide regulation during the process of X chromosome dosage compensation", states Becker. "However, our current progress only explains part of the X chromosomal recognition in vivo and we still have to improve our ability to distinguish correct DCC binding sites from 'false-positive' and false-negative' sites identified by our algorithm." In the future, the researchers intend to further refine the genome-wide biochemical analysis strategy, in order to better understand the recognition of the X chromosome by the DCC.
-end-


Ludwig-Maximilians-Universität München

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.