Nav: Home

How much carbon the land can stomach with more carbon dioxide in the air

September 02, 2019

About 600 petagrams, or 600 billion tons of carbon (the weight of about 100 billion really big elephants), was emitted as carbon dioxide from 1750-2015 due to fossil fuel burning, cement production and land-use change. About one-third of this was absorbed by land ecosystems.

Plants pull carbon dioxide out of the atmosphere by "eating" it, i.e., converting the carbon dioxide into sugars and starches, aka photosynthesis. Fortunately, plants' appetite for carbon dioxide is pretty good: The more carbon dioxide we have in the air, the faster the plants eat.

When a terrestrial ecosystem absorbs more carbon from human carbon dioxide emissions than it emits, it is called a carbon sink; otherwise, it is a carbon source. Scientists have found that rising carbon dioxide concentration in the air enhances land carbon sink, a process known as carbon dioxide fertilization. Quantifying carbon dioxide fertilization is critical for understanding and predicting how climate will affect and be affected by the carbon cycle.

Recently, researchers from 28 institutions in nine countries succeeded in quantifying carbon dioxide fertilization for the past five decades, using simulations from 12 terrestrial ecosystem models and observations from seven field carbon dioxide enrichment experiments.

They found that the sensitivity of northern temperate carbon sink to rising carbon dioxide concentration is linearly related to the site-scale sensitivity across the models. Based on this emergent relationship and field experiment observations as a constraint, the study estimated that for every 100-ppm increase in carbon dioxide in the air (equivalent to about one flea per one liter of water), terrestrial carbon dioxide sink increases by 6.4 billion tons (equivalent to 1.4 billion really big elephants) of carbon per year in the temperate Northern Hemisphere, and 35 billion tons of carbon per year globally. The team also revealed that carbon dioxide fertilization is primarily responsible for the observed increase in global terrestrial carbon sink.

"This study reduces uncertainty in the understanding of the carbon dioxide fertilization effect on terrestrial carbon sink," said co-author Dr. PIAO Shilong of the College of Urban and Environmental Sciences at Peking University. "The new approach and techniques in this study will be very useful to the scientific community in future research and studies."

"To explain further mechanisms underlying the carbon dioxide fertilization effect, more longer-term field experiments are required, particularly in boreal and tropical ecosystems. Joint effort between experimentalists and modelers is also necessary," said Dr. LIU Yongwen, lead author of the study and a research scientist at the Institute of Tibetan Plateau Research, Chinese Academy of Sciences.

Studies have shown the capacity of terrestrial ecosystems to absorb carbon dioxide is growing. This is good news since the process can slow the accumulation of carbon dioxide in the air and thus the pace of climate change. Credit should go to carbon dioxide fertilization, the extended growing season for vegetation, and reforestation, all of which help pull carbon from the atmosphere. At the same time, however, factors such as fire, heat waves and permafrost thawing - among other increasingly common global warming ills - are changing previous carbon sinks into carbon sources.
-end-
This research was supported by the Strategic Priority Research Program (Pan-TPE) of the Chinese Academy of Sciences.

Chinese Academy of Sciences Headquarters

Related Atmosphere Articles:

Primitive atmosphere discovered around 'Warm Neptune'
A pioneering new study uncovering the 'primitive atmosphere' surrounding a distant world could provide a pivotal breakthrough in the search to how planets form and develop in far-flung galaxies.
NASA's MAVEN reveals Mars has metal in its atmosphere
Mars has electrically charged metal atoms (ions) high in its atmosphere, according to new results from NASA's MAVEN spacecraft.
Northern oceans pumped CO2 into the atmosphere
The Norwegian Sea acted as CO2 source in the past.
Study opens new questions on how the atmosphere and oceans formed
A new study led by The Australian National University has found seawater cycles throughout the Earth's interior down to 2,900km, much deeper than previously thought, reopening questions about how the atmosphere and oceans formed.
How a moon slows the decay of Pluto's atmosphere
A new study from the Georgia Institute of Technology provides additional insight into relationship between Pluto and its moon, Charon, and how it affects the continuous stripping of Pluto's atmosphere by solar wind.
More Atmosphere News and Atmosphere Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...