Parkinson's disease may originate in the intestines

September 02, 2019

In 2003, a German neuropathologist proposed that Parkinson's disease, which attacks the brain, actually might originate from the gut of the patients. Researchers from Aarhus have now delivered decisive supportive evidence after seeing the disease migrate from the gut to the brain and heart of laboratory rats. The scientific journal Acta Neuropathologica has just published the results, which have grabbed the attention of neuroscientific researchers and doctors internationally.

Harmful proteins on the move

Parkinson's disease is characterised by slowly destroying the brain due to the accumulation of the protein alpha-synuclein and the subsequent damage to nerve cells. The disease leads to shaking, muscle stiffness, and characteristic slow movements of sufferers. In the new research project, the researchers used genetically modified laboratory rats which overexpress large amounts of the alpha-synuclein protein. These rats have an increased propensity to accumulate harmful varieties of alpha-synuclein protein and to develop symptoms similar to those seen in Parkinson's patients. The researchers initiated the process by injecting alpha-synuclein into the small intestines of the rats. According to professor Per Borghammer and postdoc Nathalie Van Den Berge, the experiment was intended to demonstrate that the protein would subsequently spread in a predictable fashion to the brain.

"After two months, we saw that the alpha-synuclein had travelled to the brain via the peripheral nerves with involvement of precisely those structures known to be affected in connection with Parkinson's disease in humans. After four months, the magnitude of the pathology was even greater. It was actually pretty striking to see how quickly it happened," says Per Borghammer, who is professor at the Department of Clinical Medicine at Aarhus University.

Symptoms in the intestine twenty years before the diagnosis

Per Borghammer explains that patients with Parkinson's disease often already have significant damage to their nervous system at the time of diagnosis, but that it is actually possible to detect pathological alpha-synuclein in the gut up to twenty years before diagnosis.

"With this new study, we've uncovered exactly how the disease is likely to spread from the intestines of people. We probably cannot develop effective medical treatments that halts the disease without knowing where it starts and how it spreads - so this is an important step in our research," says Per Borghammer, adding:

"Parkinson's is a complex disease that we're still trying to understand. However, with this study and a similar study in the USA that has recently arrived at the same result using mice, the suspicion that the disease begins in the gut of some patients has gained considerable support."

The research project at Aarhus University also showed that the harmful alpha-synuclein not only travel from the intestines to the brain, but also to the heart.

"For many years, we have known that Parkinson patients have extensive damage to the nervous system of the heart, and that the damage occurs early on. We've just never been able to understand why. The present study shows that the heart is damaged very fast, even though the pathology started in the intestine, and we can continue to build on this knowledge in our coming research," says Per Borghammer.
-end-


Aarhus University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.