Nav: Home

Assisted reproduction technology leaves its mark on genes temporarily, study shows

September 02, 2019

Any effect that assisted reproduction technology has on babies' genes is largely corrected by adulthood, new research led by the Murdoch Children's Research Institute has found.

Published in the latest edition of Nature Communications, the study* found events that occur in early development, including ovarian stimulation, manipulation of the embryo and the extra hormones common in fertility treatment cycles, can impact gene health or epigenetics but these effects are short lived.

Epigenetics is a process that controls how genes are turned on and off. Diet and other external environmental influences can play a role in this gene expression.

The study was designed to see how often epigenetic changes occur due to assisted reproduction technology and whether there were any differences in these changes from birth to adulthood.

"In two independent groups, we found the same effects of assisted reproduction on genes when examining heel prick blood spots collected soon after birth," study senior MCRI Professor Richard Saffery says. "These epigenetic changes were not evident in the adult blood samples."

MCRI Professor Jane Halliday, who established the cohort, and has studied the health of these individuals in adulthood, said assisted conception is linked to a small increased risk of preterm birth, low birth weight, being small for gestational age or perinatal mortality.

"Given the interventions associated with assisted reproduction technology at the time of conception, there were concerns that epigenetic changes may be taking place, silencing important genes and resulting in a heightened risk of health problems," she says.

More than seven million people around the world, including more than 200,000 people in Australia have been conceived through assisted reproduction technology since 1978.

Dr Boris Novakovic, who performed most of the analysis for the study, says that despite the expansion of assisted reproduction technology worldwide, few studies have investigated the potential underlying effects on genes.

"Previous studies have found some epigenetic changes in embryos grown in labs. However, no study has looked for these changes in the same individuals at birth and adulthood as we have done," he says.

"Our results are reassuring for families as they suggest that environment and lifestyle experienced from birth can repair any epigenetic deviations associated with fertility treatments."

The study looked at a cohort of 158 Australians aged 22-35 years conceived through assisted reproduction technology (IVF and GIFT**) and 75 people conceived naturally.

Dr Novakovic says more studies of larger sample sizes are needed in order to replicate the current findings.

Researchers from the University of Melbourne, Monash University, University of Turku, Turku University Hospital, Victorian Assisted Reproductive Treatment Authority, The Royal Women's Hospital, The Royal Children's Hospital, Hudson Institute of Medical Research, and the Monash IVF Group also contributed to the findings.

*Publication: Boris Novakovic, Sharon Lewis, Jane Halliday, Joanne Kennedy, David P Burgner, Anne Czajko, B Kim, Alex Sexton-Oates, Markus Juonala, Karin Hammarberg, David J Amor, Lex W Doyle, Sarah Ranganathan, Liam Welsh, Michael Cheung, John McBain, Robert McLachlan and Richard Saffery. 'Assisted reproductive technologies induce limited epigenetic variation at birth that largely resolves by adulthood', Nature Communications.

**80 per cent of participants were born using IVF and 20 per cent using GIFT. GIFT involves removing a woman's eggs, mixing them with sperm, and immediately placing them into a fallopian tube, unlike IVF where the fertilised egg is grown in a lab for a few days before being transferred to the womb.
-end-


Murdoch Childrens Research Institute

Related Epigenetic Articles:

Ancient epigenetic changes silence cancer-linked genes
A study in zebrafish indicates that some genes linked to cancers in humans have been strictly regulated throughout evolution.
Rapamycin retards epigenetic ageing of keratinocytes
Age, as we know it, is clearly an inappropriate measurement because it is based purely on the passing of time, irrespective of biological changes in our body.
A treasure map to understanding the epigenetic causes of disease
Researchers have identified special regions of the genome where a blood sample can be used to infer epigenetic regulation throughout the body, allowing scientists to test for epigenetic causes of disease.
Exploiting epigenetic variation for plant breeding
Epigenetic changes can bring about new traits without altering the sequence of genes.
Studies raise questions over how epigenetic information is inherited
Evidence has been building in recent years that our diet, our habits or traumatic experiences can have consequences for the health of our children -- and even our grandchildren.
More Epigenetic News and Epigenetic Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...