How do tumor cells divide in the crowd?

September 02, 2020

Most animal cells need to become spherical in order to divide. To achieve this round shape, the cells must round up and deform their neighboring cells. In a growing tumor tissue, the tumor cells need to divide in an environment that is becoming more crowded than the healthy tissue. This means that the dividing tumor cells likely need to generate much higher mechanical forces to round up in such a densely packed surrounding. Yet, tumor cells seem to be adapted to overcome these difficulties. Scientists led by Dr. Elisabeth Fischer-Friedrich were curious how do the tumor cells gain this enhanced ability to deal with the crowded tumor environment?

The researchers found that the EMT could be one of the answers. What is it exactly? "EMT or epithelial-mesenchymal transition is a hallmark of cancer progression," says Kamran Hosseini, PhD student who performed the experiments. It is a cell transformation during which tumor cells lose their asymmetric organization and detach from their neighbors, gaining the ability to migrate into other tissues. This, together with other factors, allows tumors to metastasize, i.e., move into the blood and lymphatic vessels and ultimately colonize other organs.

"So far, EMT has been mainly linked to this enhanced cell dissociation and cell migration. Our results suggest that EMT might also influence cancer cells by promoting successful rounding and cell division. These results point towards a completely new direction of how EMT could promote metastasis of carcinoma in the body," explains Kamran Hosseini.

Just as we test the ripeness of the fruits by squeezing them gently with our hands, the scientists examined the mechanical properties of individual human cells. Except, they squished the cells using an atomic force microscope. This state-of-the-art setup measured properties such as cell stiffness and cell surface tension before and after the EMT. In addition, the group of Dr. Elisabeth Fischer-Friedrich in collaboration with Dr. Anna Taubenberger (BIOTEC, TU Dresden) and Prof. Carsten Werner (IPF, Dresden) cultured mini-tumors and trapped them inside elastic hydrogels to check how mechanical confinement affects cell rounding and division of tumor cells.

The authors identified changes in rounding and growth of the tumor. EMT influenced the cancer cells in two contrasting ways. The dividing tumor cells became stiffer while surrounding non-dividing cells became softer. Furthermore, the researchers found hints that the observed mechanical changes could be linked to the increased activity of a protein called Rac1, a known regulator of the cytoskeleton.

"Our findings will not only provide important results to the field of cell biology but may also identify new targets for cancer therapeutics," says Dr. Elisabeth Fischer-Friedrich.
-end-
Publication: Advanced Science: „EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength", Authors: Kamran Hosseini, Anna Taubenberger, Carsten Werner, and Elisabeth Fischer-Friedrich https://onlinelibrary.wiley.com/doi/10.1002/advs.202001276

This study was founded by the German Research Foundation (DFG) and performed in collaboration with the Light Microscopy Facility (LMF) of the CMCB Technology Platform at TU Dresden. Dr. Elisabeth Fischer-Friedrich is a core group at the newly formed Physics of Life Cluster of Excellence (PoL) at TU Dresden.

The Biotechnology Center (BIOTEC) was founded in 2000 as a central scientific unit of the TU Dresden with the goal of combining modern approaches in molecular and cell biology with the traditionally strong engineering in Dresden. Since 2016, the BIOTEC is part of the central scientific unit "Center for Molecular and Cellular Bioengineering" (CMCB) of the TU Dresden. The BIOTEC is fostering developments in research and teaching within the Molecular Bioengineering research field and combines approaches in cell biology, biophysics and bioinformatics. It plays a central role within the research priority area Health Sciences, Biomedicine and Bioengineering of the TU Dresden.

http://www.tu-dresden.de/biotec

http://www.tu-dresden.de/cmcb

Technische Universität Dresden

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.