Nav: Home

Bad sign for global warming: thawing permafrost holds vast carbon pool

September 03, 2008

GAINESVILLE, Fla. --- Permafrost blanketing the northern hemisphere contains more than twice the amount of carbon in the atmosphere, making it a potentially mammoth contributor to global climate change depending on how quickly it thaws.

So concludes a group of nearly two dozen scientists in a paper appearing this week in the journal Bioscience. The lead author is Ted Schuur, an associate professor of ecology at the University of Florida.

Previous studies by Schuur and his colleagues elsewhere have estimated the carbon contained in permafrost in northeast Siberia. The new research expands that estimate to the rest of the permafrost-covered northern latitudes of Russia, Europe, Greenland and North America. The estimated 1,672 billion metric tons of carbon locked up in the permafrost is more than double the 780 billion tons in the atmosphere today.

"It's bigger than we thought," Schuur said.

Permafrost is frozen ground that contains roots and other soil organic matter that decompose extremely slowly. When it thaws, bacteria and fungi break down carbon contained in this organic matter much more quickly, releasing it to the atmosphere as carbon dioxide or methane, both greenhouse gases.

Scientists have become increasingly concerned about this natural process as temperatures in the world's most northern latitudes have warmed. Just last week, it was announced that the amount of sea ice covering the Arctic may reach a new low this summer. Meanwhile, there is widespread consensus that the highest latitudes will warm the fastest, a process already visible in the accelerated thawing of glaciers worldwide.

Two years ago, Schuur and two colleagues authored a paper in the journal Science estimating that 400,000 square miles of northeast Siberian permafrost contained 500 billion metric tons of carbon. For this new paper, scientists combined an extensive database of measurements of carbon content in different types of permafrost soils with the estimated spatial extent of those soils in Russia, Europe, Greenland and North America.

Schuur said the researchers estimated the carbon contained in permafrost to a depth of three meters, two meters deeper than many earlier estimates. Although permafrost depths vary greatly with location, basing the estimate on three-meter depth "better acknowledges the true size of the permafrost carbon pool," Schuur said.

The new estimate is important because it mirrors other climate change science suggesting that at a certain tipping point, natural processes could contribute significant amounts of greenhouse gases, supplementing human-influenced, industrial processes that release fossil fuel carbon, Schuur said.

"There are relatively few people living in the permafrost zone," Schuur said. "But we could have significant emissions of carbon from thawing permafrost in these remote regions."

How fast the permafrost would release its carbon is a hugely important question.

Schuur said the burning of fossil fuels contributes about 8.5 billion tons of carbon dioxide each year. Deforestation of the tropical forests and replacement of the forest with pasture or other agriculture is thought to add about 1.5 billion tons per year. How much permafrost will add will depend on how fast it thaws, but Schuur said his research indicates the figure could approach .8-1.1 billion tons per year in the future if permafrost continues to thaw.

With the Arctic warming and permafrost thawing, shrubs and trees are likely to grow on ground formerly occupied by tundra - indeed, such a transformation has already been observed in parts of Alaska, where some arctic tundra is becoming shrub land.

Because plants take in carbon dioxide and release oxygen, it might appear they could compensate for whatever carbon is released by the thawed permafrost. But Schuur said the amount of carbon stored in the permafrost is far greater than what is found in shrubs or trees.

For example, he said, a mature boreal forest may contain five kilograms per meter squared of stored carbon. But the same area of permafrost soil can contain 44 kilograms, and 80 percent of that could be lost over long-term warming. "The bottom line," he said, "is that you can't grow a big enough forest to offset the carbon release from the permafrost."
-end-
The research was conducted as part of the International Polar Year 2008-2009 and sponsored by the National Science Foundation-funded National Center for Ecological Analysis and Synthesis, and the United Nations Educational, Scientific and Cultural Organization in a grant to the Global Carbon Project.

University of Florida

Related Permafrost Articles:

Monitoring changes in wetland extent can help predict the rate of climate change
Monitoring changes to the amount of wetlands in regions where permafrost is thawing should be at the forefront of efforts to predict future rates of climate change, new research shows.
Domes of frozen methane may be warning signs for new blow-outs
Several methane domes, some 500m wide, have been mapped on the Arctic Ocean floor.
High release of strong greenhouse gas nitrous oxide found from northern peatlands at permafrost thaw
A recent study led by researchers from the University of Eastern Finland reveals that permafrost thaw may greatly increase emissions of nitrous oxide (N2O) from northern permafrost peatlands.
Huge permafrost thaw can be limited by ambitious climate targets
New study suggests that nearly 4 million square kilometres of frozen soil -- an area larger than India -- could be lost for every additional degree of global warming experienced.
Climate-driven permafrost thaw
In bitter cold regions like northwestern Canada, permafrost has preserved relict ground-ice and vast glacial sedimentary stores in a quasi-stable state.
Berkeley Lab researchers at AGU: Impacts of climate change, subsurface energy, understanding drought and monitoring permafrost among many talks
Berkeley Lab scientists will present on a number of topics including climate modeling challenges, projects on Arctic permafrost, induced seismicity, cloud physics, Amazon forests, hydraulic fracturing, melting ice sheets, cool roofs, and more.
When permafrost melts, what happens to all that stored carbon?
Arctic permafrost contains large stores of organic carbon that have been locked in for thousands of years.
Permafrost loss changes Yukon River chemistry with global implications
New USGS-led research shows that permafrost loss due to a rapidly warming Alaska is leading to significant changes in the freshwater chemistry and hydrology of Alaska's Yukon River Basin with potential global climate implications.
New permafrost map shows regions vulnerable to thaw, carbon release
A new mapping project has identified regions worldwide that are most susceptible to dramatic permafrost thaw formations, known as thermokarst, and the resulting release of greenhouse gases.
Study measures methane release from Arctic permafrost
A University of Alaska Fairbanks-led research project has provided the first modern evidence of a landscape-level permafrost carbon feedback, in which thawing permafrost releases ancient carbon as climate-warming greenhouse gases.

Related Permafrost Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.