Satellites more at risk from fast solar wind than a major space storm

September 03, 2018

Satellites are more likely to be at risk from high-speed solar wind than a major geomagnetic storm according to a new UK-US study published this week in the Journal Space Weather.

Researchers investigating the space weather risks to orbiting satellites calculated electron radiation levels within the Van Allen radiation belts. This ring-doughnut-shaped zone wraps around the Earth, trapping charged particles. Geostationary orbit lies inside the Van Allen radiation belts

The study, which analysed years of satellite data, found that electron radiation levels at geostationary orbit could remain exceptionally high for 5 days or more, even after the solar wind speed had died down. As a result, electronic components on satellites could charge up to dangerously high levels and become damaged.

Professor Richard Horne, lead author of the study, said:

"Until now we thought that the biggest risk to orbiting satellites was geomagnetic storms. Our study constructed a realistic worst-case event by looking at space weather events caused by high-speed solar wind flowing away from the Sun and striking the Earth. We were surprised to discover just how high electron radiation levels can go."

This new research is particularly interesting to the satellite industry. Professor Horne continues:

"Fast solar wind is more dangerous to satellites because the geomagnetic field extends beyond geostationary orbit and electron radiation levels are increased all the way round the orbit - in a major geomagnetic storm the field is distorted and radiation levels peak closer to the Earth.

"Electronic components on satellites are usually protected from electrostatic charges by encasing them in metal shielding. You would have to use about 2.5 mm of aluminium to reduce charging to safe levels - much more than is used at present. There are well over 450 satellites in geostationary orbit and so in a realistic worst case we would expect many satellites to report malfunctions and a strong likelihood of service outage and total satellite loss".

Dr Nigel Meredith, a co-author on the study, said:

"A few years ago, we calculated electron radiation levels for a 1 in 150 year space weather event using statistical methods. This study uses a totally different approach but gets a very similar result and confirms that the risk of damage is real."

The solar wind is a stream of particles and magnetic field flowing away from the Sun. It flows around the Earth's magnetic field and excites so-called 'chorus' plasma waves near geostationary orbit. Chorus waves accelerate electrons and form the Van Allen radiation belts. The chorus waves also travel along the geomagnetic field to the Polar Regions where they are detected on the ground at Halley Research Station, Antarctica.
-end-


British Antarctic Survey

Related Magnetic Field Articles from Brightsurf:

Investigating optical activity under an external magnetic field
A new study published in EPJ B by Chengping Yin, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China, aims to derive an analytical model of optical activity in black phosphorous under an external magnetic field.

Magnetic field and hydrogels could be used to grow new cartilage
Instead of using synthetic materials, Penn Medicine study shows magnets could be used to arrange cells to grow new tissues

Magnetic field with the edge!
This study overturns a dominant six-decade old notion that the giant magnetic field in a high intensity laser produced plasma evolves from the nanometre scale.

Global magnetic field of the solar corona measured for the first time
An international team led by Professor Tian Hui from Peking University has recently measured the global magnetic field of the solar corona for the first time.

Magnetic field of a spiral galaxy
A new image from the VLA dramatically reveals the extended magnetic field of a spiral galaxy seen edge-on from Earth.

How does Earth sustain its magnetic field?
Life as we know it could not exist without Earth's magnetic field and its ability to deflect dangerous ionizing particles.

Scholes finds novel magnetic field effect in diamagnetic molecules
The Princeton University Department of Chemistry publishes research this week proving that an applied magnetic field will interact with the electronic structure of weakly magnetic, or diamagnetic, molecules to induce a magnetic-field effect that, to their knowledge, has never before been documented.

Origins of Earth's magnetic field remain a mystery
The existence of a magnetic field beyond 3.5 billion years ago is still up for debate.

New research provides evidence of strong early magnetic field around Earth
New research from the University of Rochester provides evidence that the magnetic field that first formed around Earth was even stronger than scientists previously believed.

Massive photons in an artificial magnetic field
An international research collaboration from Poland, the UK and Russia has created a two-dimensional system -- a thin optical cavity filled with liquid crystal -- in which they trapped photons.

Read More: Magnetic Field News and Magnetic Field Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.