Nav: Home

Telescope maps cosmic rays in large and small magellanic clouds

September 03, 2018

A radio telescope in outback Western Australia has been used to observe radiation from cosmic rays in two neighbouring galaxies, showing areas of star formation and echoes of past supernovae.

The Murchison Widefield Array (MWA) telescope was able to map the Large Magellanic Cloud and Small Magellanic Cloud galaxies in unprecedented detail as they orbit around the Milky Way.

By observing the sky at very low frequencies, astronomers detected cosmic rays and hot gas in the two galaxies and identified patches where new stars are born and remnants from stellar explosions can be found.

The research was published today in Monthly Notices of the Royal Astronomical Society, one of the world's leading astronomy journals.

International Centre for Radio Astronomy Research (ICRAR) astrophysicist Professor Lister Staveley-Smith said cosmic rays are very energetic charged particles that interact with magnetic fields to create radiation we can see with radio telescopes.

"These cosmic rays actually originate in supernova remnants--remnants from stars that exploded a long time ago," he said.

"The supernova explosions they come from are related to very massive stars, much more massive than our own Sun.

"The number of cosmic rays that are produced depends on the rate of formation of these massive stars millions of years ago."

The Large and Small Magellanic Clouds are very close to our own Milky Way--less than 200,000 light years away--and can be seen in the night sky with the naked eye.

ICRAR astronomer Dr Bi-Qing For, who led the research, said this was the first time the galaxies had been mapped in detail at such low radio frequencies.

"Observing the Magellanic Clouds at these very low frequencies--between 76 and 227MHz--meant we could estimate the number of new stars being formed in these galaxies," she said.

"We found that the rate of star formation in the Large Magellanic Cloud is roughly equivalent to one new star the mass of our Sun being produced every ten years.

"In the Small Magellanic Cloud, the rate of star formation is roughly equivalent to one new star the mass of our Sun every forty years."

Included in the observations are 30 Doradus, an exceptional region of star formation in the Large Magellanic Cloud that is brighter than any star formation region in the Milky Way, and Supernova 1987A, the brightest supernova since the invention of the telescope.

Professor Staveley-Smith said the results are an exciting glimpse into the science that will be possible with next-generation radio telescopes.

"It shows an indication of the results that we will see with the upgraded MWA, which now has twice the previous resolution," he said.

Furthermore, the forthcoming Square Kilometre Array (SKA) will deliver exceptionally fine images.

"With the SKA the baselines are eight times longer again, so we'll be able to do so much better," Professor Staveley-Smith said.
-end-
Original Publication:

'A Multi-Frequency Radio Continuum Study of the Magellanic Clouds. I. Overall Structure and Star Formation Rates', published in The Monthly Notices of the Royal Astronomical Society on September 4th, 2018. Available at http://www.icrar.org/cosmic-rays

More Information:

The MWA

The Murchison Widefield Array (MWA) is a low frequency radio telescope and is the first of four Square Kilometre Array (SKA) precursors to be completed.

A consortium of partner institutions from seven countries (Australia, USA, India, New Zealand, Canada, Japan, and China) financed the development, construction, commissioning, and operations of the facility. The MWA consortium is led by Curtin University.

ICRAR

The International Centre for Radio Astronomy Research (ICRAR) is a joint venture between Curtin University and The University of Western Australia with support and funding from the State Government of Western Australia.

Multimedia:

Images and video available from http://www.icrar.org/cosmic-rays

Contacts:

Professor Lister Staveley-Smith (ICRAR / The University of WA)
Ph: (+61 8) 6488 4550
E: Lister.Staveley-Smith@icrar.org

Dr Bi-Qing For (ICRAR / The University of WA)
Ph: (+61 8) 6488 7729
E: BiQing.For@icrar.org

Pete Wheeler (Media Contact, ICRAR)
Ph: +61 423 982 018
E: Pete.Wheeler@icrar.org

International Centre for Radio Astronomy Research

Related Supernova Articles:

Supernova observation first of its kind using NASA satellite
Their research, detailed in the Monthly Notices of the Royal Astronomical Society, represents the first published findings about a supernova observed using TESS, and add new insights to long-held theories about the elements left behind after a white dwarf star explodes into a supernova.
Astronomers find possible elusive star behind supernova
Astronomers may have finally found a doomed star that seemed to have avoided detection before its explosive death.
Stellar thief is the surviving companion to a supernova
Hubble found the most compelling evidence that some supernovas originate in double-star systems.
Supernova may have 'burped' before exploding
Only by increasing the rate at which telescopes monitor the sky has it been possible to catch more Fast-Evolving Luminous Transients (FELTs) and begin to understand them.
An unusual white dwarf may be a supernova leftover
Astronomers have identified a white dwarf star in our galaxy that may be the leftover remains of a recently discovered type of supernova.
Researchers show how to make your own supernova
Researchers from the University of Oxford are using the largest, most intense lasers on the planet, to for the first time, show the general public how to recreate the effects of supernovae, in a laboratory.
The big star that couldn't become a supernova
For the first time in history, astronomers have been able to watch as a dying star was reborn as a black hole.
Seeing quadruple: Four images of the same supernova, a rare find
Galaxies bend light through an effect called gravitational lensing that helps astronomers peer deeper into the cosmos.
Explosive material: The making of a supernova
Pre-supernova stars may show signs of instability for months before the big explosion
Search for stellar survivor of a supernova explosion
Astronomers have used the NASA/ESA Hubble Space Telescope to observe the remnant of a supernova explosion in the Large Magellanic Cloud.
More Supernova News and Supernova Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#542 Climate Doomsday
Have you heard? Climate change. We did it. And it's bad. It's going to be worse. We are already suffering the effects of it in many ways. How should we TALK about the dangers we are facing, though? Should we get people good and scared? Or give them hope? Or both? Host Bethany Brookshire talks with David Wallace-Wells and Sheril Kirschenbaum to find out. This episode is hosted by Bethany Brookshire, science writer from Science News. Related links: Why Climate Disasters Might Not Boost Public Engagement on Climate Change on The New York Times by Andrew Revkin The other kind...
Now Playing: Radiolab

An Announcement from Radiolab