Nav: Home

Oregon researchers offer new way to see dirty underside of glaciers

September 03, 2018

EUGENE, Ore. -- Sept. 4, 2018 -- Accurate projections of sea level rise require sophisticated models for glacier flow, but current approaches do a poor job capturing the physical processes that control how fast glaciers slide over sediments, according to University of Oregon researchers.

In a new study, the UO team, led by postdoctoral researcher Colin Meyer, offered a theoretical approach that helps to shed light on what they call the dirty, dark undersides of glaciers and improve the modeling of ice flow.

Detailed in a July article in the journal Nature Communications, the approach captures how the amount of sediment frozen to a glacier's base varies with the underlying water pressure, melting rate and particle size. It helps account for resulting changes in frictional resistance to glacier sliding.

To illustrate their theory, the UO researchers noted that regardless of the size or weight of a glacier, sliding accommodates ice flow that is driven by gravity and adjusts surface slopes so that friction at the bed never exceeds more than about 1 bar of stress.

"This is a longstanding problem," Meyer said. "If we want to forecast what glaciers are going to do in the future, we have to talk about the place that we can't see: the interface between the ice and the bed."

Formulations dating from the early 1950s attributed this upper stress limit to the plastic-like nature of ice deformation. In their paper, however, the UO researchers noted that 50 percent of all glaciers, including those that move the most ice off land in Greenland and Antarctica into the sea, are sliding.

The earlier explanation for 1 bar of frictional stress was based on observations by Paul Mercanton, a Swiss geophysicist, in 1950 and the analysis of John Nye, now professor emeritus at the University of Bristol in the United Kingdom, in 1952.

"Nye's work carried the caveat that the formula only works for non-sliding areas," said Alan Rempel, a professor in the UO's Department of Earth Sciences and the paper's senior author. "It's not the complete story. It only applies if the glacier is stuck."

Using their new theory, which combined mathematical analysis with satellite data and geological evidence from regions previously covered by ice sheets, the UO team matched the 1 bar limit. The result provided confidence that freezing sediments is the physical process that controls the friction of the ice-sediment interface. The importance of freezing sediment, Meyer said, will be influential in developing more accurate ice flow models.

The theory's incorporation of freezing sediment provides a more complete view of glacial movement, Rempel said. "It focuses on the sliding and should help scientists accurately find the velocity of an advancing or receding glacier."

"If we want to understand how fast sea levels are going to rise, we need to know how fast the ice sheets are going to disintegrate," Meyer said. "We need to understand the role of friction at the base of a big glacier. Does water lubricate the interface or is the glacier frozen to the sediments? This friction sets how fast glaciers can flow."

The rate of sliding, Rempel said, is key to understanding impacts on sea level.

"The hypothesis that we've pushed forward is that the physics of how glacier ice interacts with its bed is exactly the same physics as how ice interacts with dirt in the world around us," Rempel said. "What we've looked at are conditions under which ice will just slide over dirt versus when ice sinks into and takes the dirt along with it."

Incorporating frozen sediment into sliding laws, Rempel said, will lead to more accurate projections of sea level rise based on glacier-related conditions.
Anthony S. Downey, who was an undergraduate student during the project, was a co-author on the paper. He has since graduated and will begin graduate school this fall at California State University, Northridge.

The National Science Foundation supported the research.

Sources: Colin Meyer, postdoctoral researcher, Department of Earth Sciences,, and Alan Rempel, professor,

Note: The UO is equipped with an on-campus television studio with a point-of-origin Vyvx connection, which provides broadcast-quality video to networks worldwide via fiber optic network. There also is video access to satellite uplink and audio access to an ISDN codec for broadcast-quality radio interviews.


About Alan Rempel:

About Colin Meyer:

Department of Earth Sciences:

University of Oregon

Related Sea Level Articles:

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.
Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.
How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.
As sea level rises, wetlands crank up their carbon storage
Some wetlands perform better under pressure. A new Nature study revealed that when faced with sea-level rise, coastal wetlands respond by burying even more carbon in their soils.
Why is sea level rising faster in some places along the US East Coast than others?
Sea levels are rising globally from ocean warming and melting of land ice, but the seas aren't rising at the same rate everywhere.
Snow over Antarctica buffered sea level rise during last century
A new NASA-led study has determined that an increase in snowfall accumulation over Antarctica during the 20th century mitigated sea level rise by 0.4 inches.
Global sea level could rise 50 feet by 2300, study says
Global average sea-level could rise by nearly 8 feet by 2100 and 50 feet by 2300 if greenhouse gas emissions remain high and humanity proves unlucky, according to a review of sea-level change and projections by Rutgers and other scientists.
Antarctica ramps up sea level rise
Ice losses from Antarctica have increased global sea levels by 7.6 mm since 1992, with two fifths of this rise (3.0 mm) coming in the last five years alone.
Coral reefs losing ability to keep pace with sea-level rise
Many coral reefs will be unable to keep growing fast enough to keep up with rising sea levels, leaving tropical coastlines and low-lying islands exposed to increased erosion and flooding risk, new research suggests.
Connection of sea level and groundwater missing link in climate response
About 250 million years ago, when the Earth had no ice caps and the water around the equator was too hot for reptiles, sea level still rose and fell over time.
More Sea Level News and Sea Level Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.