Nav: Home

New AI technology for advanced heart attack prediction

September 03, 2019

Technology developed using artificial intelligence (AI) could identify people at high risk of a fatal heart attack at least 5 years before it strikes, according to new research funded by the British Heart Foundation (BHF). The findings are being presented at the European Society of Cardiology (ESC) Congress in Paris and published in the European Heart Journal.

Researchers at the University of Oxford have developed a new biomarker, or 'fingerprint', called the fat radiomic profile (FRP), using machine learning. The fingerprint detects biological red flags in the perivascular space lining blood vessels which supply blood to the heart. It identifies inflammation, scarring and changes to these blood vessels, which are all pointers to a future heart attack.

When someone goes to hospital with chest pain, a standard component of care is to have a coronary CT angiogram (CCTA). This is a scan of the coronary arteries to check for any narrowed or blocked segments. If there is no significant narrowing of the artery, which accounts for about 75 per cent of scans [1], people are sent home, yet some of them will still have a heart attack at some point in the future. There are no methods used routinely by doctors that can spot all of the underlying red flags for a future heart attack.

In this study, Professor Charalambos Antoniades and his team firstly used fat biopsies from 167 people undergoing cardiac surgery. They analysed the expression of genes associated with inflammation, scarring and new blood vessel formation, and matched these to the CCTA scan images to determine which features best indicate changes to the fat surrounding the heart vessels, called perivascular fat.

Next, the team compared the CCTA scans of the 101 people, from a pool of 5487 individuals, who went on to have a heart attack or cardiovascular death within 5 years of having a CCTA with matched controls who did not, to understand the changes in the perivascular space which indicate that someone is at higher risk of a heart attack. Using machine learning, they developed the FRP fingerprint that captures the level of risk. The more heart scans that are added, the more accurate the predictions will become, and the more information that will become 'core knowledge'.

They tested the performance of this perivascular fingerprint in 1,575 people in the SCOT-HEART trial, showing that the FRP had a striking value in predicting heart attacks, above what can be achieved with any of the tools currently used in clinical practice.

The team hope that this powerful technology will enable a greater number of people to avoid a heart attack, and plan to roll it out to health care professionals in the next year, with the hope that it will be included in routine NHS practice alongside CCTA scans in the next 2 years.

Professor Charalambos Antoniades, Professor of Cardiovascular Medicine and BHF Senior Clinical Fellow at the University of Oxford, said:

"Just because someone's scan of their coronary artery shows there's no narrowing, that does not mean they are safe from a heart attack.

"By harnessing the power of AI, we've developed a fingerprint to find 'bad' characteristics around people's arteries. This has huge potential to detect the early signs of disease, and to be able to take all preventative steps before a heart attack strikes, ultimately saving lives.

"We genuinely believe this technology could be saving lives within the next year."

Professor Metin Avkiran, Associate Medical Director at the British Heart Foundation said:

"Every 5 minutes, someone is admitted to a UK hospital due to a heart attack. This research is a powerful example of how innovative use of machine learning technology has the potential to revolutionise how we identify people at risk of a heart attack and prevent them from happening.

"This is a significant advance. The new 'fingerprint' extracts additional information about underlying biology from scans used routinely to detect narrowed arteries. Such AI-based technology to predict an impending heart attack with greater precision could represent a big step forward in personalised care for people with suspected coronary artery disease."
-end-
In addition to the BHF, this research was funded by the National Institute for Health Research (NIHR).

To request interviews or for more information please call the BHF press office on 020 7554 0164 (07764 290 381 - out of hours) or email newsdesk@bhf.org.uk.

British Heart Foundation

One in four of us in the UK and one in three globally die from heart and circulatory diseases. That's why the British Heart Foundation funds world-leading research into their causes, prevention, treatment and cure. Advances from our research have saved and improved millions of lives, but heart diseases, stroke, vascular dementia and their risk factors such as diabetes still cause heartbreak on every street. With the public's support, our funding will drive the new discoveries to end that heartbreak.

Find out more at bhf.org.uk

British Heart Foundation

Related Heart Attack Articles:

Muscle protein abundant in the heart plays key role in blood clotting during heart attack
A prevalent heart protein known as cardiac myosin, which is released into the body when a person suffers a heart attack, can cause blood to thicken or clot--worsening damage to heart tissue, a new study shows.
New target identified for repairing the heart after heart attack
An immune cell is shown for the first time to be involved in creating the scar that repairs the heart after damage.
Heart cells respond to heart attack and increase the chance of survival
The heart of humans and mice does not completely recover after a heart attack.
A simple method to improve heart-attack repair using stem cell-derived heart muscle cells
The heart cannot regenerate muscle after a heart attack, and this can lead to lethal heart failure.
Mount Sinai discovers placental stem cells that can regenerate heart after heart attack
Study identifies new stem cell type that can significantly improve cardiac function.
Fixing a broken heart: Exploring new ways to heal damage after a heart attack
The days immediately following a heart attack are critical for survivors' longevity and long-term healing of tissue.
Heart patch could limit muscle damage in heart attack aftermath
Guided by computer simulations, an international team of researchers has developed an adhesive patch that can provide support for damaged heart tissue, potentially reducing the stretching of heart muscle that's common after a heart attack.
How the heart sends an SOS signal to bone marrow cells after a heart attack
Exosomes are key to the SOS signal that the heart muscle sends out after a heart attack.
Heart attack patients taken directly to heart centers have better long-term survival
Heart attack patients taken directly to heart centers for lifesaving treatment have better long-term survival than those transferred from another hospital, reports a large observational study presented today at Acute Cardiovascular Care 2019, a European Society of Cardiology congress.
Among heart attack survivors, drug reduces chances of second heart attack or stroke
In a clinical trial involving 18,924 patients from 57 countries who had suffered a recent heart attack or threatened heart attack, researchers at the University of Colorado Anschutz Medical Campus and fellow scientists around the world have found that the cholesterol-lowering drug alirocumab reduced the chance of having additional heart problems or stroke.
More Heart Attack News and Heart Attack Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.