Spreading light over quantum computers

September 03, 2019

Scientists at Linköping University have shown how a quantum computer really works and have managed to simulate quantum computer properties in a classical computer. "Our results should be highly significant in determining how to build quantum computers", says Professor Jan-Åke Larsson.

The dream of superfast and powerful quantum computers has again been brought into focus, and large resources have been invested in research in Sweden, Europe and the world. A Swedish quantum computer is to be built within ten years, and the EU has designated quantum technology one of its flagship projects.

At the moment, few useful algorithms are available for quantum computers, but it is expected that the technology will be hugely significant in simulations of biological, chemical and physical systems that are far too complicated for even the most powerful computers currently available. A bit in a computer can take only the value one or zero, but a quantum bit can take all values in between. Simply put, this means that quantum computers do not need to take as many operations for each calculation they carry out.

Professor Jan-Åke Larsson and his doctoral student Niklas Johansson, in the Division for Information Coding at the Department of Electrical Engineering, Linköping University, have come to grips with what happens in a quantum computer and why it is more powerful than a classical computer. Their results have been published in the scientific journal Entropy.

"We have shown that the major difference is that quantum computers have two degrees of freedom for each bit. By simulating an additional degree of freedom in a classical computer, we can run some of the algorithms at the same speed as they would achieve in a quantum computer", says Jan-Åke Larsson.

They have constructed a simulation tool, Quantum Simulation Logic, QSL, that enables them to simulate the operation of a quantum computer in a classical computer. The simulation tool contains one, and only one, property that a quantum computer has that a classical computer does not: one extra degree of freedom for each bit that is part of the calculation.

"Thus, each bit has two degrees of freedom: it can be compared with a mechanical system in which each part has two degrees of freedom - position and speed. In this case, we deal with computation bits - which carry information about the result of the function, and phase bits - which carry information about the structure of the function", Jan-Åke Larsson explains.

They have used the simulation tool to study some of the quantum algorithms that manage the structure of the function. Several of the algorithms run as fast in the simulation as they would in a quantum computer.

"The result shows that the higher speed in quantum computers comes from their ability to store, process and retrieve information in one additional information-carrying degree of freedom. This enables us to better understand how quantum computers work. Also, this knowledge should make it easier to build quantum computers, since we know which property is most important for the quantum computer to work as expected", says Jan-Åke Larsson.

Jan-Åke Larsson and his co-workers have also supplemented their theoretical simulations with a physical version built with electronic components. The gates are similar to those used in quantum computers, and the toolkit simulates how a quantum computer works. With its help students, for example, can simulate and understand how quantum cryptography and quantum teleportation works, and also some of the most common quantum computing algorithms, such as Shor's algorithm for factorisation. (The algorithm works in the current version of the simulation but is equally fast - or slow - as in classical computers).
-end-
The LiU scientists founded a company in 2017. This has recently been included in a list drawn up by the of web journal EU-startups of the ten most interesting start-ups in Europe that "cool down the crazy world of quantum computing".

(The heading "10 European startups cooling down the crazy world of quantum computing" is a play on words, and refers to the fact that quantum computers normally require extensive cooling.)

Quantum Simulation Logic, Oracles, and the Quantum Advantage
Niklas Johansson and Jan-Åke Larsson
Department of Electrical Engineering, Linköping University, SE-581 83 Linköping, Sweden
Entropy 2019 https://doi.org/10.3390/e21080800

Contact: Jan-Åke Larsson, jan-ake.larsson@liu.se, +46 13 28 14 68

Linköping University

Related Quantum Computers Articles from Brightsurf:

Optical wiring for large quantum computers
Researchers at ETH have demonstrated a new technique for carrying out sensitive quantum operations on atoms.

New algorithm could unleash the power of quantum computers
A new algorithm that fast forwards simulations could bring greater use ability to current and near-term quantum computers, opening the way for applications to run past strict time limits that hamper many quantum calculations.

A new technique prevents errors in quantum computers
A paper recently published in Nature presents a protocol allowing for the error detection and the protection of quantum processors in case of qubit loss.

New method prevents quantum computers from crashing
Quantum information is fragile, which is why quantum computers must be able to correct errors.

Natural radiation can interfere with quantum computers
Radiation from natural sources in the environment can limit the performance of superconducting quantum bits, known as qubits.

New model helps to describe defects and errors in quantum computers
A summer internship in Bilbao, Spain, has led to a paper in the journal Physical Review Letters for Jack Mayo, a Master's student at the University of Groningen, the Netherlands.

The first intuitive programming language for quantum computers
Several technical advances have been achieved recently in the pursuit of powerful quantum computers.

Hot qubits break one of the biggest constraints to practical quantum computers
A proof-of-concept published today in Nature promises warmer, cheaper and more robust quantum computing.

Future quantum computers may pose threat to today's most-secure communications
Quantum computers that are exponentially faster than any of our current classical computers and are capable of code-breaking applications could be available in 12 to 15 years, posing major risks to the security of current communications systems, according to a new RAND Corporation report.

Novel error-correction scheme developed for quantum computers
Experimental quantum computers are plagued with errors. Here Dr Arne Grimsmo from the University of Sydney and colleagues from RMIT and the University of Queensland offer a novel method to reduce errors in a scheme applicable across different types of quantum hardware.

Read More: Quantum Computers News and Quantum Computers Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.