Nav: Home

Corals take control of nitrogen recycling

September 03, 2019

Corals are shown to recycle their own waste ammonium using a surprising source of glucose--a finding that reveals more about the relationship between corals and their symbiotic algae.

Symbiosis between corals and algae provides the backbone for building coral reefs, particularly in nutrient-poor waters like the Red Sea. Algae and corals cooperate to share nutrient resources, but the precise metabolic interactions at play are still unclear.

Now, KAUST researchers have shown that the coral host uses organic carbon--in glucose sourced from its symbiotic algae--to recycle its own waste ammonium. Previous research had suggested that the algae alone may be responsible for ammonium (nitrogen) recycling. The KAUST team believes that, by controlling this nitrogen recycling mechanism, the coral host can in turn control algal growth by restricting or enabling nitrogen flow.

"Molecular research on coral-algae symbiosis is relatively young. The first genetic sequencing study focusing on the coral model anemone Aiptasia was published in 2014," says Guoxin Cui at the Red Sea Research Center, who worked on the project under the supervision of Manuel Aranda. "To explore the molecular mechanisms underlying Aiptasia's symbiotic relationship with the algae Symbiodiniaceae, we first integrated all published RNA-sequencing data on this relationship and conducted a meta-analysis."

Meta-analysis is a statistical method originally developed for medical research, to calculate the precise effects of a specific medicine on patients with a specific disease by combining results from multiple trials.

"In our case, each gene could be seen as an individual 'medicine,' and we can calculate the effect of each gene on symbiosis by monitoring its expression changes across many experiments" says Cui. "Because we use large datasets compiled from multiple studies, we can be pretty confident of the effect size we calculate for each gene. By focusing on those genes that are definitely associated with symbiosis, we can eliminate noise from unwanted parameters."

Once the team had identified a set of high-confidence genes, they set up a metabolomics experiment, with the help of their colleagues at KAUST's Core Labs, using symbiotic and nonsymbiotic (or bleached) Aiptasia. They placed the anemones in water and added bicarbonate containing labeled carbon-13 (13C) isotopes.

The symbiotic algae absorbed the bicarbonate during photosynthesis, transferring the 13C signal to the host's metabolites. The team could then follow the carbon isotope through the metabolic pathways of the anemones and determine which were enriched with 13C.

"Our results show that competition for nitrogen is a key mechanism within coral-algae symbiosis," says Cui. "These insights will help us understand what goes wrong when the relationship is placed under stress, for example, because of shifting climates."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Nitrogen Articles:

We must wake up to devastating impact of nitrogen, say scientists
More than 150 top international scientists are calling on the world to take urgent action on nitrogen pollution, to tackle the widespread harm it is causing to humans, wildlife and the planet.
How nitrogen-fixing bacteria sense iron
New research reveals how nitrogen-fixing bacteria sense iron - an essential but deadly micronutrient.
Corals take control of nitrogen recycling
Corals use sugar from their symbiotic algal partners to control them by recycling nitrogen from their own ammonium waste.
Foraging for nitrogen
As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions.
Inert nitrogen forced to react with itself
Direct coupling of two molecules of nitrogen: chemists from Würzburg and Frankfurt have achieved what was thought to be impossible.
Researchers discover new nitrogen source in Arctic
Scientists have revealed that the partnership between an alga and bacteria is making the essential element nitrogen newly available in the Arctic Ocean.
Scientists reveal impacts of anthropogenic nitrogen discharge on nitrogen transport in global rivers
Scientists found that riverine dissolved inorganic nitrogen in the USA has increased primarily due to the use of nitrogen fertilizers.
Nitrogen gets in the fast lane for chemical synthesis
A new one-step method discovered by synthetic organic chemists at Rice University allows nitrogen atoms to be added to precursor compounds used in the design and manufacture of drugs, pesticides, fertilizers and other products.
Nitrogen fixation in ambient conditions
EPFL scientists have developed a uranium-based complex that allows nitrogen fixation reactions to take place in ambient conditions.
New regulators of nitrogen use in plants identified
Researchers have identified a set of gene regulators in plants that could help plants utilize nitrogen better, which would prevent ecological damage from excess nitrogen in the soil.
More Nitrogen News and Nitrogen Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab