Nav: Home

Study tests performance of electric solid propellant

September 03, 2019

Electric solid propellants are being explored for use in dual-mode rocket engines because they aren't susceptible to ignite from a spark or flame and can be turned on and off electrically.

Researchers from the University of Illinois at Urbana-Champaign, Missouri University of Science and Technology, and NASA conducted experiments to understand the behavior of a high-performance electric propellant compared with a traditional propellant.

"Electric solid propellants have been studied as chemical rocket propellants, but what we focused on is studying these types of propellants for electric propulsion systems--so, not the fire, smoke, and combustion you see in chemical rocket engines but for in-space electric pulsed plasma thrusters," said Joshua Rovey, associate professor in the Department of Aerospace Engineering in The Grainger College of Engineering at the U of I.

Rovey explained that in electric engines, there is a high-temperature plasma right next to the surface of the electric solid propellant. A small amount of that surface vaporizes and gets expelled out at high speeds. That's called ablation.

"Learning about the amount of ablation can allow us to better assess how it might perform as a propellant in an electric rocket engine, and better assess its lifetime," Rovey said.

Rovey said the application for dual-mode or multimode rocket engines is that there could be one rocket engine with one propellant that can operate in the chemical mode with high thrust, or you can operate it in an electric mode, in which a very fast electric pulse ablates the surface off of the material, and provides very high performance.

In the experiment, a high-performance electric propellant, manufactured by Digital Solid State Propulsion was compared with polytetrafluoroethylene, a traditional propellant used in ablative pulsed plasma thrusters. The space and high-altitude vacuum facility in the Aerospace Plasma Lab was used to conduct the tests. The propellant samples were measured before and after testing to determine how much of the propellant comes off of the surface with each electric pulse.

The results indicate that the electric solid propellant ablates about two times more than the traditional propellant and that the physics of the high-temperature ablation-fed arc discharge is similar for both propellants.

Rovey said, in addition to rocket engines, electric solid propellants can be used as a safer explosive in mines and pyrotechnics because it only ignites with an electrical signal.
-end-


University of Illinois College of Engineering

Related Surface Articles:

SMART discovers breakthrough way to look at the surface of nanoparticles
Researchers at SMART have discovered a way for scientists to study the properties of a nanoparticle without damaging it -- something that is not possible with widely used chemical processes today.
What makes the Earth's surface move?
Do tectonic plates move because of motion in the Earth's mantle, or is the mantle driven by the plates' movement?
New surface treatment could improve refrigeration efficiency
Unlike water, liquid refrigerants and other fluids that have a low surface tension tend to spread quickly into a sheet when they come into contact with a surface.
Research brief: Surface protein editing in bacteria
UMN research delves into an unknown cell circuit in bacteria that can lead to new targets for antibiotics.
Searching for the surface of water through a single molecule
By observing the spectroscopic behavior of single water molecules embedded in a super-cold, cage-like molecular structure, researchers have revealed key features that underlie the diffuse vibrational spectra of hydrogen-oxygen bonds that make studying the two-dimensional surface structure of water a challenge.
Putting a face on a cell surface
With the help of machine learning, ETH researchers have been able to thoroughly describe the repertoire proteins on the cell surface for the first time.
Penetrating the soil's surface with radar
Ground penetrating radar measures the amount of moisture in soil quickly and easily.
A multifunctional, multiscale, reconfigurable surface
An international team of researchers, led by Harvard University, have developed a dynamic surface with reconfigurable topography that can sculpt and re-sculpt microscale to macroscale features, change its friction and slipperiness, and tune other properties based on its proximity to a magnetic field.
Building crystals on a very hot surface
An innovative chemical reactor for depositing semiconductors at very high temperatures draws on the strength of Saudi Arabia's chemical industry.
Land use change has warmed the Earth's surface
Recent changes to vegetation cover are causing the Earth's surface to heat up.
More Surface News and Surface Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.