Nav: Home

Study tests performance of electric solid propellant

September 03, 2019

Electric solid propellants are being explored for use in dual-mode rocket engines because they aren't susceptible to ignite from a spark or flame and can be turned on and off electrically.

Researchers from the University of Illinois at Urbana-Champaign, Missouri University of Science and Technology, and NASA conducted experiments to understand the behavior of a high-performance electric propellant compared with a traditional propellant.

"Electric solid propellants have been studied as chemical rocket propellants, but what we focused on is studying these types of propellants for electric propulsion systems--so, not the fire, smoke, and combustion you see in chemical rocket engines but for in-space electric pulsed plasma thrusters," said Joshua Rovey, associate professor in the Department of Aerospace Engineering in The Grainger College of Engineering at the U of I.

Rovey explained that in electric engines, there is a high-temperature plasma right next to the surface of the electric solid propellant. A small amount of that surface vaporizes and gets expelled out at high speeds. That's called ablation.

"Learning about the amount of ablation can allow us to better assess how it might perform as a propellant in an electric rocket engine, and better assess its lifetime," Rovey said.

Rovey said the application for dual-mode or multimode rocket engines is that there could be one rocket engine with one propellant that can operate in the chemical mode with high thrust, or you can operate it in an electric mode, in which a very fast electric pulse ablates the surface off of the material, and provides very high performance.

In the experiment, a high-performance electric propellant, manufactured by Digital Solid State Propulsion was compared with polytetrafluoroethylene, a traditional propellant used in ablative pulsed plasma thrusters. The space and high-altitude vacuum facility in the Aerospace Plasma Lab was used to conduct the tests. The propellant samples were measured before and after testing to determine how much of the propellant comes off of the surface with each electric pulse.

The results indicate that the electric solid propellant ablates about two times more than the traditional propellant and that the physics of the high-temperature ablation-fed arc discharge is similar for both propellants.

Rovey said, in addition to rocket engines, electric solid propellants can be used as a safer explosive in mines and pyrotechnics because it only ignites with an electrical signal.
-end-


University of Illinois College of Engineering

Related Surface Articles:

Changes in surface sugarlike molecules help cancer metastasize
Changes in a specific type of sugarlike molecule, or glycan, on the surface of cancer cells help them to spread into other tissues, according to researchers at UC Davis.
Journalism is an 'attack surface' for those who spread misinformation
For all the benefits in the expansion of the media landscape, we're still struggling with the spread of misinformation -- and the damage is especially worrisome when it comes to information about science and health.
Finding connections at the surface
How and where receptors touch at the surface of a cell may influence the strength of neuronal connections and contribute to identifying better medical interventions for pain, cancer other diseases.
A self-cleaning surface that repels even the deadliest superbugs
A team of researchers at McMaster University has developed a self-cleaning surface that can repel all forms of bacteria, preventing the transfer of antibiotic-resistant superbugs and other dangerous bacteria in settings ranging from hospitals to kitchens.
Scratching the surface of perovskites
Professor Yabing Qi and his team in the Energy Materials and Surface Sciences Unit at OIST, in collaboration with researchers at the University of Pittsburgh, USA, have, for the first time, characterized the structural defects that prompt the movement of ions, destabilizing the perovskite materials.
SMART discovers breakthrough way to look at the surface of nanoparticles
Researchers at SMART have discovered a way for scientists to study the properties of a nanoparticle without damaging it -- something that is not possible with widely used chemical processes today.
What makes the Earth's surface move?
Do tectonic plates move because of motion in the Earth's mantle, or is the mantle driven by the plates' movement?
New surface treatment could improve refrigeration efficiency
Unlike water, liquid refrigerants and other fluids that have a low surface tension tend to spread quickly into a sheet when they come into contact with a surface.
Research brief: Surface protein editing in bacteria
UMN research delves into an unknown cell circuit in bacteria that can lead to new targets for antibiotics.
Searching for the surface of water through a single molecule
By observing the spectroscopic behavior of single water molecules embedded in a super-cold, cage-like molecular structure, researchers have revealed key features that underlie the diffuse vibrational spectra of hydrogen-oxygen bonds that make studying the two-dimensional surface structure of water a challenge.
More Surface News and Surface Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Space
One of the most consistent questions we get at the show is from parents who want to know which episodes are kid-friendly and which aren't. So today, we're releasing a separate feed, Radiolab for Kids. To kick it off, we're rerunning an all-time favorite episode: Space. In the 60's, space exploration was an American obsession. This hour, we chart the path from romance to increasing cynicism. We begin with Ann Druyan, widow of Carl Sagan, with a story about the Voyager expedition, true love, and a golden record that travels through space. And astrophysicist Neil de Grasse Tyson explains the Coepernican Principle, and just how insignificant we are. Support Radiolab today at Radiolab.org/donate.