Study tests performance of electric solid propellant

September 03, 2019

Electric solid propellants are being explored for use in dual-mode rocket engines because they aren't susceptible to ignite from a spark or flame and can be turned on and off electrically.

Researchers from the University of Illinois at Urbana-Champaign, Missouri University of Science and Technology, and NASA conducted experiments to understand the behavior of a high-performance electric propellant compared with a traditional propellant.

"Electric solid propellants have been studied as chemical rocket propellants, but what we focused on is studying these types of propellants for electric propulsion systems--so, not the fire, smoke, and combustion you see in chemical rocket engines but for in-space electric pulsed plasma thrusters," said Joshua Rovey, associate professor in the Department of Aerospace Engineering in The Grainger College of Engineering at the U of I.

Rovey explained that in electric engines, there is a high-temperature plasma right next to the surface of the electric solid propellant. A small amount of that surface vaporizes and gets expelled out at high speeds. That's called ablation.

"Learning about the amount of ablation can allow us to better assess how it might perform as a propellant in an electric rocket engine, and better assess its lifetime," Rovey said.

Rovey said the application for dual-mode or multimode rocket engines is that there could be one rocket engine with one propellant that can operate in the chemical mode with high thrust, or you can operate it in an electric mode, in which a very fast electric pulse ablates the surface off of the material, and provides very high performance.

In the experiment, a high-performance electric propellant, manufactured by Digital Solid State Propulsion was compared with polytetrafluoroethylene, a traditional propellant used in ablative pulsed plasma thrusters. The space and high-altitude vacuum facility in the Aerospace Plasma Lab was used to conduct the tests. The propellant samples were measured before and after testing to determine how much of the propellant comes off of the surface with each electric pulse.

The results indicate that the electric solid propellant ablates about two times more than the traditional propellant and that the physics of the high-temperature ablation-fed arc discharge is similar for both propellants.

Rovey said, in addition to rocket engines, electric solid propellants can be used as a safer explosive in mines and pyrotechnics because it only ignites with an electrical signal.

University of Illinois College of Engineering

Related Surface Articles from Brightsurf:

3D printing the first ever biomimetic tongue surface
Scientists have created synthetic soft surfaces with tongue-like textures for the first time using 3D printing, opening new possibilities for testing oral processing properties of food, nutritional technologies, pharmaceutics and dry mouth therapies.

Surface waves can help nanostructured devices keep their cool
A research team led by The Institute of Industrial Science, The University of Tokyo demonstrated that hybrid surface waves called surface phonon-polaritons provide enhanced thermal conductivity in nanoscale membranes.

A novel salvinia-like slippery surface
Inspired by the hydrophobic leaves of Salvinia molesta and the slippery Nepenthes pitcher plants, a Salvinia-like slippery surface (SSS) consisting of protrusions with slippery heads was designed.

Illuminating cell surface receptors
Human cells sense and communicate via cell surface receptors on their surface.

Tuning the surface gives variations to metal foils
IBS researchers reported how to give variations to single crystalline metal foils.

Division of labour on the surface of bacteria
Bacteria of the species Thermus thermophilus possess two types of extensions on their surface (pili) for the purpose of motion and for capturing and absorbing DNA from their environment.

Changes in surface sugarlike molecules help cancer metastasize
Changes in a specific type of sugarlike molecule, or glycan, on the surface of cancer cells help them to spread into other tissues, according to researchers at UC Davis.

Journalism is an 'attack surface' for those who spread misinformation
For all the benefits in the expansion of the media landscape, we're still struggling with the spread of misinformation -- and the damage is especially worrisome when it comes to information about science and health.

Finding connections at the surface
How and where receptors touch at the surface of a cell may influence the strength of neuronal connections and contribute to identifying better medical interventions for pain, cancer other diseases.

A self-cleaning surface that repels even the deadliest superbugs
A team of researchers at McMaster University has developed a self-cleaning surface that can repel all forms of bacteria, preventing the transfer of antibiotic-resistant superbugs and other dangerous bacteria in settings ranging from hospitals to kitchens.

Read More: Surface News and Surface Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to