Tropical sea snake uses its head to 'breathe'

September 03, 2019

Humans use a snorkel and fish have gills. Now researchers have found a sea snake which uses a complex system of blood vessels in its head to draw in extra oxygen when it dives and swims underwater.

During submersion, the blue-banded sea snake (Hydrophis cyanocinctus) is now thought to use an extensive vascular network across the top of its head to absorb oxygen from the surrounding water.

"For the first time, we describe this modified cephalic vascular network (MCVN) that provides this sea snake with a complementary supply of oxygen to the brain during submersion," says lead researcher, Flinders University evolutionary researcher Dr Alessandro Palci, who is a visiting researcher at the University of Alberta, Canada.

"Basically we found that this sea snake uses the top of its head as a gill to breathe underwater," says Dr Palci.

The highly venomous blue-banded sea snakes, which live in tropical waters of Southeast Asia, are found on coral reefs and warm coastal waters. Sea snakes must surface regularly to breathe but are among the most completely aquatic of all air-breathing vertebrates.

The vascular network, located just under the skin of the snout and forehead of the snake, surprised researchers in their new study.

"While the MCVN is structurally very different from the gills of fish and amphibians, its function is nonetheless quite similar, in that it provides a large surface area packed with oxygen-depleted blood vessels that can efficiently take in oxygen from the surrounding water," Dr Palci says.

ARC Future Fellow Dr Kate Sanders, from the University of Adelaide School of Biological Sciences, says the latest study expands understanding of the unusual cutaneous respiratory anatomy of sea snakes.

"Sea snakes have been extremely successful at adapting to a fully marine lifestyle, including the ability to absorb oxygen through their skin," Dr Sanders says.

"Now we have discovered this interesting feature in H. cyanocinctus by using microCT scans and computer modelling.

"This feature probably allows these sea snakes to stay submerged for longer periods of time, which further research can test."

Mr Palci, with experts from the South Australian Museum, Vietnam Academy of Science and Technology, and University of Adelaide, modelled the snake's special feature.
-end-
ARC funding support for Dr Palci, Dr Sanders and Matthew Flinders Fellow Professor Mike Lee, based at the SA Museum, as well as Flinders University supported the research.

'Novel vascular plexus in the head of a sea snake (Elapidae, Hydrophiinae) revealed by high-resolution computed tomography and histology' (2019) by A Palci, RS Seymour, C Van Nguyen, MN Hutchinson, MSY Lee and KL Sanders - from Flinders University, University of Adelaide, Vietnam Academy of Science and Technology, and South Australian Museum - will be published in Royal Society Open Science (DOI: 10.1098/rsos.191099).

Flinders University

Related Blood Vessels Articles from Brightsurf:

Biofriendly protocells pump up blood vessels
In a new study published today in Nature Chemistry, Professor Stephen Mann and Dr Mei Li from Bristol's School of Chemistry, together with Associate Professor Jianbo Liu and colleagues at Hunan University and Central South University in China, prepared synthetic protocells coated in red blood cell fragments for use as nitric oxide generating bio-bots within blood vessels.

Specific and rapid expansion of blood vessels
Upon a heart infarct or stroke, rapid restoration of blood flow, and oxygen delivery to the hypo perfused regions is of eminent importance to prevent further damage to heart or brain.

Flexible and biodegradable electronic blood vessels
Researchers in China and Switzerland have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation.

Lumpy proteins stiffen blood vessels of the brain
Deposits of a protein called ''Medin'', which manifest in virtually all older adults, reduce the elasticity of blood vessels during aging and hence may be a risk factor for vascular dementia.

Cancer cells take over blood vessels to spread
In laboratory studies, Johns Hopkins Kimmel Cancer Center and Johns Hopkins University researchers observed a key step in how cancer cells may spread from a primary tumor to a distant site within the body, a process known as metastasis.

Novel function of platelets in tumor blood vessels found
Scientists at Uppsala University have discovered a hitherto unknown function of blood platelets in cancer.

Blood vessels can make you fat, and yet fit
IBS scientists have reported Angiopoietin-2 (Angpt2) as a key driver that inhibits the accumulation of potbellies by enabling the proper transport of fatty acid into general circulation in blood vessels, thus preventing insulin resistance.

Brothers in arms: The brain and its blood vessels
The brain and its surrounding blood vessels exist in a close relationship.

Feeling the pressure: How blood vessels sense their environment
Researchers from the University of Tsukuba discovered that Thbs1 is a key extracellular mediator of mechanotransduction upon mechanical stress.

Human textiles to repair blood vessels
As the leading cause of mortality worldwide, cardiovascular diseases claim over 17 million lives each year, according to World Health Organization estimates.

Read More: Blood Vessels News and Blood Vessels Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.