Researchers probe Soldier sleep deprivation effects

September 03, 2020

RESEARCH TRIANGLE PARK, N.C. - New Army-funded study looks at effects of sleep deprivation, which can greatly affect Soldiers on the battlefield.

Research conducted at the University of Rochester Medical Center and funded by the Army Research Office, an element of the U.S. Army Combat Capabilities Development Command's Army Research Laboratory, suggests that people who rely on sleeping during daytime hours are at greater risk for developing neurological disorders.

The study, published in Nature Communications, details how the complex set of molecular and fluid dynamics that comprise the glymphatic system - the brain's unique process of waste removal - are synchronized with the master internal clock that regulates the sleep-wake cycle.

"Establishing a role for communication between astrocytes and the significant impacts of circadian timing on glymphatic clearance dynamics represent a major step in understanding the fundamental process of waste clearance regulation in the brain," said Dr. Frederick Gregory, a program manager for ARO's neurophysiology of cognition initiative. "This knowledge is crucial to developing future countermeasures that offset the deleterious effects of sleep deprivation and addresses future multi-domain military operation requirements for Soldiers to sustain performance over longer periods without the ability to rest."

The glymphatic system, first discovered by the URMC Nedergaard lab in 2012, consists of a network that piggybacks on the brain's blood circulation system and is comprised of layers of plumbing, with the inner blood vessel encased by a 'tube' that transports cerebrospinal fluid. The system pumps the fluid through brain tissue primarily during sleep, washing away toxic proteins and other waste.

"These findings show that glymphatic system function is not solely based on sleep or wakefulness, but by the daily rhythms dictated by our biological clock," said neuroscientist Maiken Nedergaard, M.D., D.M.Sc., co-director of the Center for Translational Neuromedicine at URMC and senior author of the study.

The research team and others have shown the role that blood pressure, heart rate, circadian timing, and depth of sleep play in the glymphatic system's function and the chemical signaling that occurs in the brain to turn the system on and off. They have also shown how disrupted sleep or trauma can cause the system to break down and allow toxic proteins to accumulate in the brain, potentially giving rise to a number of neurodegenerative diseases, such as Alzheimer's.

Circadian rhythms, 24-hour body clocks, are maintained in a small area of the brain called the suprachiasmatic nucleus. This clock regulates several important biological functions, including the sleep-wake cycle.

The new study, conducted in mice, showed that when the animals were anesthetized all day long, their glymphatic system still only functioned during their typical rest period - mice are nocturnal, so their sleep-wake cycle is the opposite of humans.

"Circadian rhythms in humans are tuned to a day-wake, night-sleep cycle," said Dr. Lauren Hablitz, first author of the new study and a research assistant professor in the Center for Translational Neuromedicine at URMC. "Because this timing also influences the glymphatic system, these findings suggest that people who rely on cat naps during the day to catch up on sleep or work the night shift may be at risk for developing neurological disorders. In fact, clinical research shows that individuals who rely on sleeping during daytime hours are at much greater risk for Alzheimer's and dementia along with other health problems."

The study singles out cells called astrocytes that play multiple functions in the brain. Scientists believe that astrocytes in the suprachiasmatic nucleus help regulate circadian rhythms. Astrocytes also serve as gatekeepers that control the flow of cerebrospinal fluid throughout the central nervous system. The results of the study suggest that communication between astrocytes in different parts of the brain may share the common goal of optimizing the glymphatic system's function during sleep.

The researchers also found that during wakefulness, the glymphatic system diverts cerebrospinal fluid to lymph nodes in the neck. Because the lymph nodes are key waystations in the regulation of the immune system, the research suggests that cerebrospinal fluid may represent a fluid clock that helps wake up the body's infection fighting capabilities during the day.
-end-
In addition to the Army, the National Institute of Neurological Disorders and Stroke, the National Institute of Aging, and the Novo Nordisk and Lundbeck Foundations supported the research.

CCDC Army Research Laboratory is an element of the U.S. Army Combat Capabilities Development Command. As the Army's corporate research laboratory, ARL is operationalizing science to achieve transformational overmatch. Through collaboration across the command's core technical competencies, CCDC leads in the discovery, development and delivery of the technology-based capabilities required to make Soldiers more successful at winning the nation's wars and come home safely. CCDC is a major subordinate command of the Army Futures Command.

U.S. Army Research Laboratory

Related Sleep Articles from Brightsurf:

Size and sleep: New research reveals why little things sleep longer
Using data from humans and other mammals, a team of scientists including researchers from the Santa Fe Institute has developed one of the first quantitative models that explains why sleep times across species and during development decrease as brains get bigger.

Wind turbine noise affects dream sleep and perceived sleep restoration
Wind turbine noise (WTN) influences people's perception of the restorative effects of sleep, and also has a small but significant effect on dream sleep, otherwise known as REM (rapid eye movement) sleep, a study at the University of Gothenburg, Sweden, shows.

To sleep deeply: The brainstem neurons that regulate non-REM sleep
University of Tsukuba researchers identified neurons that promote non-REM sleep in the brainstem in mice.

Chronic opioid therapy can disrupt sleep, increase risk of sleep disorders
Patients and medical providers should be aware that chronic opioid use can interfere with sleep by reducing sleep efficiency and increasing the risk of sleep-disordered breathing, according to a position statement from the American Academy of Sleep Medicine.

'Short sleep' gene prevents memory deficits associated with sleep deprivation
The UCSF scientists who identified the two known human genes that promote 'natural short sleep' -- nightly sleep that lasts just four to six hours but leaves people feeling well-rested -- have now discovered a third, and it's also the first gene that's ever been shown to prevent the memory deficits that normally accompany sleep deprivation.

Short sleep duration and sleep variability blunt weight loss
High sleep variability and short sleep duration are associated with difficulties in losing weight and body fat.

Nurses have an increased risk of sleep disorders and sleep deprivation
According to preliminary results of a new study, there is a high prevalence of insufficient sleep and symptoms of common sleep disorders among medical center nurses.

Common sleep myths compromise good sleep and health
People often say they can get by on five or fewer hours of sleep, that snoring is harmless, and that having a drink helps you to fall asleep.

Sleep tight! Researchers identify the beneficial role of sleep
Why do animals sleep? Why do humans 'waste' a third of their lives sleeping?

Does extra sleep on the weekends repay your sleep debt? No, researchers say
Insufficient sleep and untreated sleep disorders put people at increased risk for metabolic problems, including obesity and diabetes.

Read More: Sleep News and Sleep Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.