Could plants help us find dead bodies? Forensic botanists want to know

September 03, 2020

Search teams looking for human remains are often slowed by painstaking on-foot pursuits or aerial searches that are obscured by forest cover. In a Science & Society article appearing September 3 in the journal Trends in Plant Science, the authors discuss utilizing tree cover in body recovery missions to our advantage, by detecting changes in the plant's chemistry as signals of nearby human remains. Though the impact of human decomposition on plants has not yet been thoroughly explored, the researchers outline the steps needed to make body recovery using vegetation more of a reality.

"In smaller, open landscapes foot patrols could be effective to find someone missing, but in more forested or treacherous parts of the world like the Amazon, that's not going to be possible at all," says senior author Neal Stewart Jr., a professor of plant sciences at the University of Tennessee. "This led us to look into plants as indicators of human decomposition, which could lead to faster, and possibly safer body recovery."

Research into the relationship between plants and human decomposition will take place on the University of Tennessee's "body farm." Officially known as the Anthropology Research Facility, this is where scientists examine the process of human body decay under different conditions. There, investigators will assess how "cadaver decomposition islands"--the zone immediately surrounding humans remains--change the nutrient concentrations of the soil, and how those changes manifest in the nearby plants.

"The most obvious result of the islands would be a large release of nitrogen into the soil, especially in the summertime when decomposition is happening so fast," Stewart says. "Depending on how quickly the plants respond to the influx of nitrogen, it may cause changes in leaf color and reflectance."

However, other large mammals, like deer, may also die in the places people go missing. So, one hurdle the research must overcome is finding metabolites specific to the breakdown of humans. As humans typically have non-wild diets, there may be specific metabolites, like those from drugs or food preservatives, that have specific influences on plant appearance. "One thought is if we had a specific person who went missing who was, let's say, a heavy smoker, they could have a chemical profile that could trigger some sort of unique plant response making them easier to locate. Though at this stage this idea is still farfetched," Stewart remarks.

Once the influences of cadaver metabolites on plants are better understood, search teams could develop imagers to scan plants for specific fluorescence or reflectance signals that indicate human remains are close by. While some of this technology already exists, scientists still need to know which species of plant and the appropriate signals to look for. "We've actually built a whole plant imager that can analyze fluorescence signatures," says Stewart. "But the first steps are going to be very fine scale, looking at individual leaves and measuring how their reflectance or fluorescence changes over time when plants are near human remains." Once diagnostic spectra are compiled, researchers can begin to think about scaling up to drones and other tech that can analyze a wide stretch of area in a short time.

"When you start to think about deploying drones to look for specific emissions, now we can think of the signals more like a check engine light-- if we can quickly fly where someone may have gone missing and collect data over tens or even hundreds of square kilometers, then we'd know the best spots to send in a search team," Stewart remarks.

While these ideas are exciting, we are still several years away from feasibly using plants as search tools in body recovery missions. In the meantime, a collaborative team of botanists, anthropologists, and soil scientists will begin working at the body farm, designing their first set of plant-cadaver experiments.
-end-
This research was developed with funding from the Defense Advanced Research Projects Agency. Additional support was given from USDA Hatch grants and the University of Tennessee.

Trends in Plant Science, Brabazon et al.: "Plants to remotely detect human decomposition?" https://www.cell.com/trends/plant-science/fulltext/S1360-1385(20)30243-0

Trends in Plant Science (@TrendsPlantSci), published by Cell Press, is a monthly review journal that features broad coverage of basic plant science, from molecular biology through to ecology. Aimed at researchers, students, and teachers, its articles are authoritative and written by both leaders in the field and rising stars. Visit: http://www.cell.com/trends/plant-science. To receive media alerts for Cell Press journals, please contact press@cell.com

Cell Press

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.