Nav: Home

Cell division: Cleaning the nucleus without detergents

September 03, 2020

Organization of cells into specific compartments is critical for their function. For instance, by separating the nucleus from the cytoplasm, the nuclear envelope prevents premature translation of immature RNAs. During mitosis, however, the nuclear envelope disassembles, allowing large cytoplasmic components such as ribosomes to mix with nuclear material. When the nuclear envelope reassembles following mitosis, these cytoplasmic components must once again be removed. "The nuclear envelope can contribute to this by actively importing or exporting substrates up to a certain size, but it was not clear what happens with very large cytoplasmic components", says Mina Petrovic, PhD student in the Gerlich lab and joint first author of the study.

The research team from IMBA and EMBL have now shown that large components such as ribosomes are in fact removed from the forming nucleus before the nuclear envelope is assembled again. This exclusion process requires the protein Ki-67, which was the focus of an earlier publication in Nature by Sara Cuylen-Häring, the other joint first author of this study, when she was a postdoc in the Gerlich lab in 2016. Dr Cuylen-Häring explains: "We previously showed that Ki-67 was responsible for keeping chromosomes separate in early stages of mitosis by acting as a surfactant. Remarkably, we have now found that it changes its properties at the end of mitosis and performs the opposite function, namely clustering of chromosomes. By coming together into a dense cluster at the end of cell division, chromosomes are able to exclude large cytoplasmic components before the nuclear envelope reforms."

This important work shows how a single protein can dynamically change the material properties of cellular components to regulate compartmentalization of key processes within the cell.
-end-
Original Publication: Cuylen-Haering, Petrovic et al.,'Chromosome clustering by Ki-67 excludes cytoplasm during nuclear assembly', Nature, 2020 doi 10.1038/s41586-020-2672-3

About IMBA

IMBA - Institute of Molecular Biotechnology - is one of the leading biomedical research institutes in Europe focusing on cutting-edge stem cell technologies, functional genomics, and RNA biology. IMBA is located at the Vienna BioCenter, the vibrant cluster of universities, research institutes and biotech companies in Austria. IMBA is a subsidiary of the Austrian Academy of Sciences, the leading national sponsor of non-university academic research. The stem cell and organoid research at IMBA is being funded by the Austrian Federal Ministry of Science and the City of Vienna. http://www.imba.oeaw.ac.at

About EMBL

EMBL is Europe's flagship laboratory for the life sciences. Established in 1974 as an intergovernmental organisation, EMBL is supported by over 20 member states.

EMBL performs fundamental research in molecular biology, studying the story of life. The institute offers services to the scientific community; trains the next generation of scientists and strives to integrate the life sciences across Europe.

EMBL is international, innovative and interdisciplinary. Its more than 1600 staff, from over 80 countries, operate across six sites in Barcelona (Spain), Grenoble (France), Hamburg (Germany), Heidelberg (Germany), Hinxton (UK) and Rome (Italy). EMBL scientists work in independent groups and conduct research and offer services in all areas of molecular biology.

EMBL research drives the development of new technology and methods in the life sciences. The institute works to transfer this knowledge for the benefit of society.

Press contacts:

IMBA: caterina.purini@imba.oeaw.ac.at

EMBL: mathias.jaeger@embl.org

IMBA- Institute of Molecular Biotechnology of the Austrian Academy of Sciences

Related Chromosomes Articles:

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.
Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.
New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.
Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.
Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.
How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.
GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.
Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.
X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.
How chromosomes change their shape during cell differentiation
Scientists from the RIKEN Center for Biosystems Dynamics Research have provided an explanation of how chromosomes undergo structural changes during cell differentiation.
More Chromosomes News and Chromosomes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.