Cellular roadmaps predict body's coronavirus vulnerability

September 03, 2020

ITHACA, N.Y. - New research from Cornell University developed potential roadmaps for how the coronavirus infects organs and identifies what molecular factors could help facilitate or restrict infection.

"The data suggest that it's not just a respiratory disease," said lead author Cedric Feschotte, molecular biology professor. "It's much broader than that and has the potential to affect many other organs. Our analyses suggest that there is a wide range of cellular vulnerabilities."

The study maps the expression of 28 human genes dubbed "SCARFs" - SARS-Cov-2 and Coronavirus-Associated Receptors and Factors. By looking at the single-cell RNA expression of these genes, they can predict which tissues and cell types are most vulnerable to coronavirus infection - in both adults and embryos.

The team analyzed the RNA expression of healthy human tissues to develop a comprehensive profile of the molecular factors that both facilitate and restrict SARS-CoV2 infection.

Without the immune system's ability to respond quickly, Feschotte said, naturally occurring restriction factors already present in the tissues represent the body's main line of defense against SARS-CoV-2.

Mapping the different entry points for the virus also is essential for trying to predict where the virus will go after it enters the body. Moreover, by pinpointing the molecular routes of infection, other researchers can use those areas as targets for developing drugs to overcome the infection.

The study indicates alternate entry paths for how the virus could enter the lungs, central nervous system and heart. Their research also supports emerging clinical data that shows SARS-CoV-2 also infects the intestines, kidney and placenta. They noted that specific groups of cells within the prostate and testes are likely to be permissive for SARS-CoV-2 and may help explain male-specific vulnerabilities.

As part of this project, the team also developed an open-access, user-friendly web interface where anyone can look up the single-cell RNA expressions of SCARFs. This will facilitate easy access to data that will help scientists around the world.
The study, "A Single-Cell RNA Expression Map of Human Coronavirus Entry Factors," published Sept. 3 in Cell Reports.

For more information, see this Cornell Chronicle story.

Cornell University

Related RNA Articles from Brightsurf:

A new RNA catalyst from the lab
On the track of evolution: a catalytically active RNA molecule that specifically attaches methyl groups to other RNAs - a research group from the University of Würzburg reports on this new discovery in Nature.

Small RNA as a central player in infections
The most important pathogenicity factors of the gastric pathogen Helicobacter pylori are centrally regulated by a small RNA molecule, NikS.

RNA as a future cure for hereditary diseases
ETH Zurich scientists have developed an RNA molecule that can be used in bone marrow cells to correct genetic errors that affect protein production.

Bringing RNA into genomics
By studying RNA-binding proteins, a research consortium known as ENCODE (Encyclopedia of DNA Elements) has identified genomic sites that appear to code for RNA molecules that influence gene expression.

RNA key in helping stem cells know what to become
If every cell has the same genetic blueprint, why does an eye cell look and act so differently than a brain cell or skin cell?

RNA structures by the thousands
Researchers from Bochum and Münster have developed a new method to determine the structures of all RNA molecules in a bacterial cell at once.

New kind of CRISPR technology to target RNA, including RNA viruses like coronavirus
Researchers in the lab of Neville Sanjana, PhD, at the New York Genome Center and New York University have developed a new kind of CRISPR screen technology to target RNA.

Discovery of entirely new class of RNA caps in bacteria
The group of Dr. Hana Cahová of the Institute of Organic Chemistry and Biochemistry of the CAS, in collaboration with scientists from the Institute of Microbiology of the CAS, has discovered an entirely new class of dinucleoside polyphosphate 5'RNA caps in bacteria and described the function of alarmones and their mechanism of function.

New RNA mapping technique shows how RNA interacts with chromatin in the genome
A group led by scientists from the RIKEN Center for Integrative Medical Sciences (IMS) in Japan have developed a new method, RADICL-seq, which allows scientists to better understand how RNA interacts with the genome through chromatin--the structure in which the genome is organized.

Characterising RNA alterations in cancer
The largest and most comprehensive catalogue of cancer-specific RNA alterations reveals new insights into the cancer genome.

Read More: RNA News and RNA Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.