Ocean Sediments Contain Record of Past Vegetation Fires in Africa

September 03, 1996

Ocean sediments contain a record of past vegetation fires, called biomass burning by scientists -- and this record shows much more past burning, at least in Africa during the Pleistocene era, than researchers expected.

National Science Foundation (NSF)-funded marine geologists David Verardo and William Ruddiman of the University of Virginia in Charlottesville have found in their research on ocean sediments the first detailed marine record of late Pleistocene era fires on land. Their paper, "Late Pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance," appears in the September issue of the journal GEOLOGY.

"Biomass burning, a result of fires started by lightning strikes, is important for its relationship to climate (drier climates have more burning) and its immense effect on vegetation, and therefore land ecosystems," says Connie Sancetta, program director in NSF's marine geology and geophysics program, which funded Verardo's research along with NSF's climate dynamics program.

The burning of trees and grasses on land produces charred particles, or charcoal. Charcoal may then be transported long distances by winds and rivers to coastal and ocean environments, where it's then preserved in ocean sediments. Explains Verardo, "Charcoal may be swept aloft in plumes rising from active fires, and transported by prevailing winds from the source area to the ocean within days to weeks of its initial formation. It eventually sinks and becomes part of the sediments at the bottom of the sea."

Verardo studied such sediments by analyzing a core taken from the bottom of the eastern tropical Atlantic Ocean. "It was full, much to my surprise, of a large amount of charcoal," he says. "Given the great distance to land and the regional slope of the sea floor, the charcoal in this core must have been brought there by winds." The charcoal is a mixture of particles from both rainforest and savanna trees, as well as grasslands. Research on modern-day air mass routes for the eastern tropical Atlantic region indicates that the sediment in the core lies below several large-scale circulation pathways originating in Africa.

Says Sancetta, "Verardo's work is important because he has uncovered a record of burning that goes beyond historical records, so we can study natural burning before human influence." This in turn will help scientists determine whether human-induced burning has different effects than natural burning, and how burning is related to changes in ecology, and perhaps evolution, on longer time scales. "Another implication of Verardo's work," adds Sancetta, "is that if a lot of the carbon [charcoal] in ocean sediments is terrestrial in origin, then it isn't marine in origin. And scientists have been studying the marine record as a major place to find out about past carbon dioxide changes. If they've been making the wrong assumptions about how much marine carbon is involved, then their estimates about carbon dioxide in the oceans may be wrong."

Current models have not been able to determine exactly how the total amount of carbon on earth is distributed. According to Verardo, "This new data sheds much-needed light on where the 'missing' carbon may lie: in ocean-bottom sediments laden with charcoal from fires on land."

National Science Foundation

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.