Earth is becoming a greener greenhouse

September 04, 2001

WASHINGTON - Over the past 21 years, parts of the northern hemisphere have become much greener than they used to be. Researchers using satellite data have confirmed that plant life above 40 degrees north latitude (New York, Madrid, Ankara, Beijing) has been growing more vigorously since 1981 due to rising temperatures and buildup of greenhouse gases, and Eurasia seems to be greening more than North America, as existing vegetation is more lush for longer periods of time.

These results will appear in the September 16 issue of the Journal of Geophysical Research - Atmospheres, published by the American Geophysical Union. The authors are Liming Zhou, Robert Kaufmann, Nikolai Shabanov and Ranga Myneni of Boston University, and Daniel Slayback and Compton Tucker of NASA's Goddard Space Flight Center, Greenbelt, Maryland.

"When we looked at temperature and satellite vegetation data, we saw that year to year changes in growth and duration of the growing season of northern vegetation are tightly linked to year to year changes in temperature," Zhou said. The area of vegetation has not extended, but the existing vegetation has increased in density.

The authors also looked at the differences in vegetation growth between North America and Eurasia, because the patterns and magnitudes of warming are different on the two continents. The greenness data from satellites were strongly correlated to temperature data from thousands of meteorological stations on both continents. The Eurasian greening was especially persistent over a broad contiguous swath of land from central Europe through Siberia to far-east Russia, where most of the vegetation is forests and woodlands. North America, in comparison, shows a fragmented pattern of change notable only in the forests of the east and grasslands of the upper Midwest.

Dramatic changes in the timing of both the appearance and fall of leaves are recorded in these two decades of satellite data. The authors report a growing season that is now almost 18 days longer, on average, in Eurasia, with spring arriving a week early and autumn delayed by 10 days. In North America, the growing season appears to be as much as 12 days longer.

The researchers used a temperature data set developed from the Global Historical Climate Network (HCN). Dr. James Hansen of NASA's Goddard Institute for Space Studies in New York, who developed this data set, said, "The data were compiled from several thousand meteorological stations in the United States and around the world. The stations also include many rural sites where the data are collected by cooperative private observers."

Myneni suggested that these results are indicative of a greener greenhouse. "This is an important finding because of possible implications to the global carbon cycle," he said. Carbon dioxide is a main greenhouse gas and is thought to play a major role in rising global temperatures. Further, Myneni said, under the Kyoto protocol, most of the developed countries in the north can use certain vegetation carbon sinks to meet their greenhouse gas emissions reduction commitments. If the northern forests are greening, they may already be absorbing carbon. Myneni said, "As to how much and for how long, that needs more research."

Tucker developed the Normalized Difference Vegetation Index (NDVI) product to help determine the "greening" of plant life. The NDVI uses red and near-infrared solar radiation reflected back to sensors of the Advanced Very High Resolution Radiometers (AVHRR) aboard the National Oceanic and Atmospheric Administration (NOAA) series of polar-orbiting satellites. These data are records of sensor observations of every patch of land on Earth, at least once a day, continuously from July 1981. Processing of such massive amounts of data is a time consuming task, even on modern computers, and requires special methods to correct for atmospheric obscuration of Earth's surface. The NDVI developed from processed data shows greening and browning of plants as they relate to seasonal changes and conditions such as drought or abundant rainfall.
-end-
This work was made possible through funding by the NASA Earth Science Enterprise's Pathfinder Data Sets and Associated Science Program.

American Geophysical Union

Related Greenhouse Gases Articles from Brightsurf:

Mitigation of greenhouse gases in dairy cattle through genetic selection
Researchers in Spain propose mitigating methane production by dairy cattle through breeding.

Researchers control cattle microbiomes to reduce methane and greenhouse gases
''Now that we know we can influence the microbiome development, we can use this knowledge to modulate microbiome composition to lower the environmental impact of methane from cows by guiding them to our desired outcomes,'' Ben-Gurion University of the Negev Prof Mizrahi says.

A new look into the sources and impacts of greenhouse gases in China
Special issue of Advances in Atmospheric Sciences reveals new findings on China's GHG emissions and documents changes in local and regional environments.

New catalyst recycles greenhouse gases into fuel and hydrogen gas
Scientists have taken a major step toward a circular carbon economy by developing a long-lasting, economical catalyst that recycles greenhouse gases into ingredients that can be used in fuel, hydrogen gas, and other chemicals.

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.

Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.

White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.

Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.

What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.

Greenhouse gases were the main driver of climate change in the deep past
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.

Read More: Greenhouse Gases News and Greenhouse Gases Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.