Nav: Home

Colorectal cancer: Tipping the scales

September 04, 2018

The regulatory protein c-MYC plays an important role in promoting the development of many types of tumors. c-MYC is a transcription factor that controls the activity of large numbers of genes involved in cell division, and its overexpression leads to excessive cell proliferation. A new study carried out by a team led by Professor Heiko Hermeking at the Institute of Pathology at LMU (and German Cancer Consortium) now shows that c-MYC induces the production of a transcription factor, which increases the numbers of stem cells in the intestinal epithelium, and thereby contributes to the formation of adenomas ("polyps") in the colon. Their findings appear in the online journal "Nature Communications".

In approximately 90% of patients that present with colon carcinoma, the expression of the c-MYC protein is strongly increased due to mutations in the APC/beta-catenin pathway. As a result, the genes activated by c-MYC are themselves upregulated. Among the targets of c-MYC is the gene AP4, which codes for the transcription factor of the same name (AP4). Transcription factors like c-MYC and AP4 act as regulatory switches that enable the genetic information encoded in specific segments of the DNA to be transcribed into messenger RNA, which programs the synthesis of the corresponding proteins. Hermeking and his colleagues had previously demonstrated that AP4 promotes the metastasis of colon tumors (i.e., the migration of tumor cells into other tissues, where they can give rise to satellite tumors). "However, the normal function of the protein in the intestinal epithelium remained unknown, and whether or not it participates in primary tumorigenesis in the organ was unclear," Hermeking explains.

In order to investigate this further, the researchers turned to an experimental mouse model for hereditary adenomatous polyposis of the colon in humans. In this ApcMin strain of mice, which is particularly prone to develop colon cancer, the team deleted the Ap4 gene specifically in the colon epithelium. "It turned out that mice which lacked the Ap4 protein developed significantly fewer tumors and survived for 100 days longer, on average, than did the mice that could still synthesize it," says Hermeking. Surprisingly, the loss of Ap4 had no effect on the division rates of either normal or tumorous epithelial cells in the colon. Instead, deletion of Ap4 is associated with a reduction in the numbers of adult stem cells present in the tissue. "This finding confirms a recently proposed model, which postulates that the incidence of tumorigenesis is correlated with the number of stem cells in an organ. Stem cells are thus especially susceptible to malignant transformation," says Hermeking.

Further studies on cultured, tumor-derived, intestinal cells grown under conditions in which they form aggregations known as organoids and tumoroids validated the effect. Analysis of gene activity in these microstructures enabled the researchers to conclude that Ap4 acts on two crucial signaling pathways that regulate the balance between stem cell maintenance and differentiation, and tips the scales toward stem cells.
-end-
(Nature Communications 2018)

Publication:

Ap4 is rate limiting for intestinal tumor formation by controlling the homeostasis of intestinal stem cells

Stephanie Jaeckel, Markus Kaller, Rene Jackstadt, Ursula Götz, Susanna Müller, Sophie Boos, David Horst, Peter Jung and Heiko Hermeking

Nature Communications 2018

https://www.nature.com/articles/s41467-018-06001-x

Contact:

Prof. Dr. Heiko Hermeking
Experimental and Molecular Pathology
Institute of Pathology, LMU Munich
Phone: +49 (0) 89/2180-73685
E-mail: Heiko.Hermeking@med.uni-muenchen.de

Ludwig-Maximilians-Universität München

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.