Charge fluctuations, a new property in superconductors

September 04, 2019

Superconductivity enables us to prevent loss when transporting energy from power plants to our homes. However, to do this, the lines must be cooled to temperatures that are so low as to make large-scale use of superconductors uneconomic at present. Therefore, in laboratories across the world researchers are looking for new superconductive materials that function at less prohibitive temperatures.

Great hope rests on so-called cuprates, copper and oxygen based compounds also called high-temperature superconductors, where the scientific community is focusing its efforts. An experiment conducted at the ESRF (European Synchrotron Radiation Facility), the European source of synchrotron-generated light, in Grenoble, coordinated by the Department of Physics at the Politecnico di Milano, with researchers from the Spin Institute from the National Research Council, Sapienza Università di Roma and the Chalmers University of Technology in Gothenburg, has revealed a new property of these materials: the presence of a variety of charge density waves called dynamical charge density fluctuations.

The study has been published in Science. These fluctuations do not appear to interfere with superconductivity; instead, they influence electrical resistance in the so-called 'normal' state, i.e. at temperatures above the superconducting critical temperature. Knowing about the presence of these charge fluctuations does not solve the key mystery, that of superconductivity; however it enables us to explain another strange behaviour of cuprates - the fact that they have a different electrical resistance to that of conventional metals. Furthermore this new "ingredient" could prove decisive in explaining superconductivity, no matter how this hypothesis is verified in the future.

In 2012 it was discovered that, in many cases, the superconductivity of cuprates is countered by load density waves, which partly impede transmission without resistance from electrons in the cuprates, without stopping it completely. Increasing our knowledge of these special materials is essential to being able to produce superconductors that function at ambient temperature or thereabouts, which is now a critical technological and scientific challenge.

The experiment which made this observation possible was carried out at the ESRF European Synchrotron Radiation Facility using RIXS technology, which analyses the preferred X-ray diffusion directions of the material under study.

Politecnico di milano

Related Superconductivity Articles from Brightsurf:

New kind of superconductivity discovered
Superconductivity is a phenomenon where an electric circuit loses its resistance and becomes extremely efficient under certain conditions.

Room temperature superconductivity creeping toward possibility
The possibility of achieving room temperature superconductivity took a tiny step forward with a recent discovery by a team of Penn State physicists and materials scientists.

A 'breath of nothing' provides a new perspective on superconductivity
Zero electrical resistance at room temperature? A material with this property, i.e. a room temperature superconductor, could revolutionize power distribution.

New Princeton study takes superconductivity to the edge
The existence of superconducting currents, or supercurrents, along the exterior of a superconductor, has been surprisingly hard to find.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

How a magnet could help boost understanding of superconductivity
Physicists have unraveled a mystery behind the strange behavior of electrons in a ferromagnet, a finding that could eventually help develop high temperature superconductivity.

New study explains why superconductivity takes place in graphene
Theoretical physicists take important step in development of high temperature superconductors.

Better studying superconductivity in single-layer graphene
A new study published in EPJ B demonstrates that an existing technique is better suited for probing superconductivity in pure, single-layer graphene than previously thought.

Stressing metallic material controls superconductivity
No strain, no gain -- that's the credo for Cornell researchers who have helped find a way to control superconductivity in a metallic material by stressing and deforming it.

First report of superconductivity in a nickel oxide material
Scientists at SLAC and Stanford have made the first nickel oxide material that shows clear signs of superconductivity - the ability to transmit electrical current with no loss.

Read More: Superconductivity News and Superconductivity Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to