Automated text analysis: The next frontier of marketing innovation

September 04, 2019

Researchers from University of Pennsylvania, Northwestern University, University of Maryland, Columbia University, and Emory University published a new article in the Journal of Marketing that provides an overview of automated textual analysis and describes how it can be harnessed to generate marketing insights.

The study, forthcoming in the January issue of the Journal of Marketing, is titled "Uniting the Tribes: Using Text for Marketing Insights" and authored by Jonah Berger, Ashlee Humphreys, Wendy Moe, Oded Netzer, and David Schweidel.

Online reviews, customer service calls, press releases, news articles, marketing communications, and other interactions create a wealth of textual data companies can analyze to optimize services and develop new products. By some estimates, 80-95% of all business data is unstructured, with most of that being text. This text has the potential to provide critical insights about its producers, including individuals' identities, their relationships, their goals, and how they display key attitudes and behaviors. This text can be aggregated to create insights about organizations and social institutions and how attitudes vary over cultural contexts, demographics, groups, and time.

Berger explains that "The digitization of information has made a wealth of textual data readily available. But by itself, all this data is just that. Data. For data to be useful, researchers have to be able to extract underlying insight--to measure, track, understand, and interpret the causes and consequences of marketplace behavior."

But how can marketers do that? The research team explains how researchers and managers can use text to better understand the individuals and organizations who produce the text. The article also explores how the content of text affects various audiences. For example, how consumers may be influenced to change their behaviors or brands influenced to attend to issues raised by consumers depends in large part on the content of text. Moe adds that "Automated text analysis opens the black-box of interactions, allowing researchers to directly access what is being said and how it is said in marketplace communication."

Given the volume of text data available, automated text analysis methods are critical, but need to be handled carefully. Researchers should avoid over-fitting and weigh the importance of features to glean and use the right predictors from text. Thus, this article also provides an overview of the methodologies and metrics used in text analysis, providing a set of guidelines and procedures for marketing researchers and marketing scholars. Understanding these methods help us understand how text is used and processed. For example, virtual assistants are currently under scrutiny for the fact that humans are listening to the audio recordings. However, this process is necessary to train the machines used for automated text analysis.

The goal of this article is to further the collective understanding of text analysis and how it can be used for insights. Researchers and marketers can use this article to create frameworks, establish and communicate policies, and strengthen cross-functional collaboration with teams working on textual analytics projects.
Full article and author contact information available at:

About the Journal of Marketing

The Journal of Marketing develops and disseminates knowledge about real-world marketing questions useful to scholars, educators, managers, policy makers, consumers, and other societal stakeholders around the world. Published by the American Marketing Association since its founding in 1936, JM has played a significant role in shaping the content and boundaries of the marketing discipline. Christine Moorman (T. Austin Finch, Sr. Professor of Business Administration at the Fuqua School of Business, Duke University) serves as the current Editor in Chief.

About the American Marketing Association (AMA)

As the largest chapter-based marketing association in the world, the AMA is trusted by marketing and sales professionals to help them discover what's coming next in the industry. The AMA has a community of local chapters in more than 70 cities and 350 college campuses throughout North America. The AMA is home to award-winning content, PCM® professional certification, premiere academic journals, and industry-leading training events and conferences.

American Marketing Association

Related Data Articles from Brightsurf:

Keep the data coming
A continuous data supply ensures data-intensive simulations can run at maximum speed.

Astronomers are bulging with data
For the first time, over 250 million stars in our galaxy's bulge have been surveyed in near-ultraviolet, optical, and near-infrared light, opening the door for astronomers to reexamine key questions about the Milky Way's formation and history.

Novel method for measuring spatial dependencies turns less data into more data
Researcher makes 'little data' act big through, the application of mathematical techniques normally used for time-series, to spatial processes.

Ups and downs in COVID-19 data may be caused by data reporting practices
As data accumulates on COVID-19 cases and deaths, researchers have observed patterns of peaks and valleys that repeat on a near-weekly basis.

Data centers use less energy than you think
Using the most detailed model to date of global data center energy use, researchers found that massive efficiency gains by data centers have kept energy use roughly flat over the past decade.

Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.

Life data economics: calling for new models to assess the value of human data
After the collapse of the blockchain bubble a number of research organisations are developing platforms to enable individual ownership of life data and establish the data valuation and pricing models.

Geoscience data group urges all scientific disciplines to make data open and accessible
Institutions, science funders, data repositories, publishers, researchers and scientific societies from all scientific disciplines must work together to ensure all scientific data are easy to find, access and use, according to a new commentary in Nature by members of the Enabling FAIR Data Steering Committee.

Democratizing data science
MIT researchers are hoping to advance the democratization of data science with a new tool for nonstatisticians that automatically generates models for analyzing raw data.

Getting the most out of atmospheric data analysis
An international team including researchers from Kanazawa University used a new approach to analyze an atmospheric data set spanning 18 years for the investigation of new-particle formation.

Read More: Data News and Data Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to