Scientists invented how to improve steel properties by 100 times

September 04, 2019

Scientists from Tomsk Polytechnic University have updated the alloying process, i.e. improving the properties of metal with impurities, which not only enhances the wear resistance of materials but also provides new qualities required by hi-tech manufacturing, science, and energy.

The study results were published in the journal Surface and Coatings Technology and presented at the conference on Surface Modification of Materials by Ion Beams (SMMIB) 2019 that recently took place in Tomsk.

By now, traditional alloying methods are reported to have exhausted their technological potential. Therefore, metals are more increasingly exposed to beams of charged particles, plasma flows, and laser radiation so as to obtain advanced materials. Ion implantation (ion doping) is one of those methods enabling to change elemental composition, microstructure, and morphology of surface layers that determine such properties as wear resistance, corrosion resistance, and others.

Tomsk scientists developed a new method of ion implantation that dramatically expands the applications of the method in industry. According to Alexander Ryabchikov, the head of the Laboratory for Highly Intensive Ion Implantation, they have been able to experimentally improve the wear resistance of stainless steel by more than a hundred times.

In addition, this technology makes it possible to manufacture details and products with needed specific surface properties. For example, a barrier layer is formed by ion doping of zirconium with titanium, thus preventing oxygen penetration. This can be used to increase the service life and safety of operation of nuclear fuel cells.

Currently, the industrial use of ion doping is constrained by the small thickness of the formed ion-doped layers. The issue to be addressed through the increased kinetic energy of the ion flux implies the use of big accelerators, which is not cost-effective.

'We proposed to increase the ion penetration depth into the material by enhancing the radiation-induced diffusion with high-density ion beams that are two-three orders of magnitude superior to those used in traditional ion implantation,' said Alexander Ryabchikov.

The results obtained in the laboratory confirm the possibility of creating a doped surface layer with a depth of several hundred micrometers, while other methods of ion doping enable a depth of several tens and hundreds of nanometers.

The authors emphasize that the development of highly intensive implantation of ions with low energy could revolutionize the technology of improving material properties. Further research in this field will enable to reduce the cost of the technology application and improve the quality of products.
The study was supported by the grant of the Russian Science Foundation.

This year, Russia hosted the 21st International Conference on Surface Modification of Materials by Ion Beams (SMMIB-2019) for the first time. It was held on 26 - 30 August 2019 in Tomsk. Tomsk Polytechnic University was a co-organizer and the venue of the event. The large-scale conference brought together over 150 scientists (from 22 countries) who are leading physicists in the field of ion beam technology and advanced materials.

Tomsk Polytechnic University

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to