Nav: Home

Transport proteins provide key to improve infant formula

September 04, 2019

Sugar compounds in breast milk play a crucial role in the development of a healthy gut bacterial community and contribute to the maturation of the immune system in infants. In a new study professors from DTU and Kyoto University, Japan, have established a framework to identify and describe the function of key transport proteins that mediate the uptake of nutrients from the mothers breastmilk to an important group of bacteria in the child's intestines.

These proteins transport human milk oligosaccharides or HMOs, which are complex sugars produced by the mother, to nourish important bifidobacteria associated with the development of good health.

"Our work allows us to establish a clear link between the type of sugars in the mother's milk and the health-promoting bacteria in the infant's gut. More importantly, our work allows mapping the best sugar from mothers milk on the menu of infant health-beneficial gut bacteria based on the transport proteins" says Professor Maher Abou Hachem from DTU Bioengineering, who conducted the study in collaboration with Professor Takane Katayama from Kyoto University.

Maher Abou Hachem believes that this new line of research will guide milk formula producers to synthesize new sugar additives in a rational manner, thereby ensuring that children who drink milk formula receive similarly beneficial sugars as children who are breast-fed do.

The research on human milk sugars has been published in the prestigious journal Science Advances and has been conducted in a broad collaboration between researchers with expertise in microbiology, protein and carbohydrate chemistry as well as bioinformatics. A part of the study involving analyses of faecal bacteria and mother's milk from mother-infant pairs and a control group of human adults has been conducted in Japan, while the molecular description of the transport proteins and their HMO preferences has been conducted in Denmark.

The establishment of the gut microbiota begins at birth and this bacterial community develops until the age of 2-3 years. During this critical window, before maturation of the immune system, large changes can occur in the gut microbiota. After weaning, the immune system is programmed for a specific structure of the gut community, which persists throughout adulthood.

Maher Abou Hachem emphasizes that it is well documented that bifidobacteria play a major role in the development of healthy gut microbiota in children. A well-developed infant bacterial community reduces the risk factors for immune and metabolic disorders such as allergy, asthma, diabetes, obesity and a variety of other diseases.

"It is crucial to establish the right gut microbiota early in the child's life. Conversely, factors that interfere with the development of the "right" microbiota are associated with life-long health disorders. If we get the wrong organisms from early life and we get used to them and they are accepted as part of the microbiota, it will be very difficult to re-select the normal and beneficial bacteria afterward," says Maher Abou Hachem.
-end-
About the publication

In the publication Evolutionary adaptation in fucosyllactose uptake systems support bifidobacteria-infant symbiosis (Link) the scientists reveal and comprehensively analyze two functionally distinct but overlapping human milk sugar (oligosaccharides), HMO, transporters of Bifidoabcterium longum subsp. infantis.

The research establishes a methodological platform to investigate and map the correlations between occurrence and the function of specific transport proteins and genes, HMO consumption, and the establishment of a bifidobacteria-rich microbiota in the breast-fed infant guts.

Mother's milk and milk formula

Mother's milk contains the essential nutrients for neonates, including fats proteins and carbohydrates (lactose or milk sugar). Notably, the third most abundant component in milk comprises a complex mixture of oligosaccharides termed human milk oligosaccharides (HMOs). These HMOs are not digestible by infants, but are exclusively synthesized as "nutrient sugars" to attract a healthy gut microbiota, dominated by members of Bifidobacterium.

HMOs, play a crucial role in the development of healthy gut microbiota and a strong immune system in infants, which has life-long consequences on their health as adults. Strikingly, HMOs from mother's milk contains more than 100 different sugar structures that differ in size and complexity. To date, the specific impact of distinct sugars on the composition of the gut microbiota, and thereby on the health trajectory of the infant remains unclear.

Since many infants are raised on milk formula, intense research is ongoing in academia and industry to create an infant formula that compensates for the lack of HMOs in bovine milk (human HMOs are unique and are not present in animal milk).

The first generation of infant formula contained oligosaccharides from plants, e.g. galacto-oligosaccharides, which had little resemblance to HMOs, but currently, different companies are endeavoring to add synthetic sugars identical to authentic HMOs. The synthesized HMOs are chosen based on how easy they are to produce or how abundant they are in human milk, but there is no insight into how different types of HMOs influence the assembly of a healthy infant gut microbiota.

Technical University of Denmark

Related Immune System Articles:

Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
The immune system's fountain of youth
Helping the immune system clear away old cells in aging mice helped restore youthful characteristics.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.