Nav: Home

The argument for sexual selection in bacteria

September 04, 2019

The evolutionary pressure to pass on DNA can produce behavior that otherwise makes no sense in a struggle to survive. Rams bash heads in fights over females; peacocks grow elaborate tail feathers that attract mates and predators alike. Sexual selection can sometimes explain phenomena that natural selection alone cannot. But could bacteria exhibit sexual selection? In an Opinion article published September 4 in the journal Trends in Microbiology, researchers at the University of Exeter argue that some bacteria might.

Bacteria usually clone themselves to reproduce, but they are also known to swap DNA. A donor bacteria cell can transfer genes to a recipient cell in a process called lateral gene transfer, which can happen through three mechanisms: transduction, conjugation, and transformation. The research group thinks this DNA exchange (and transformation in particular) could be governed by sexual selection at times.

"Transformation and other forms of DNA transfer are very prevalent in almost all types of bacteria and have a huge effect on their evolution. For instance, bacteria can take up antibiotic resistance genes from other strains and species, with profound consequences for human health," says first author Michiel Vos, a microbiologist at the University of Exeter. "So, it is important to try to understand exactly why they have evolved to release and take up DNA."

In transformation, a donor cell releases its DNA into the surrounding environment either by actively pumping it out of the cell or by simply rupturing and spilling its contents. The recipient cell might then take up the free-floating DNA and incorporate it into its own genome. When the recipient cell later clones itself, it propagates a genome that is mostly self-DNA but has snippets of donor DNA.

Scientists have several theories explaining why bacteria do this. Some focus on natural selection and how new donor DNA benefits cell survival. Others argue that transformation isn't about natural selection at all but other functions, such as using DNA from the environment as food or for repair, and that the genetic mixing is just a coincidental byproduct. Vos and his colleagues think that although natural selection must act on DNA release and uptake, there could be additional benefits of sexual selection.

"One analogy we drew, which will be controversial to some, is between DNA release and uptake as, respectively, the male and female functions," says Vos. "Female and male functions are defined by the size of gametes--large eggs or small sperm--and, of course, bacteria do not have gametes."

But Vos and his colleagues see several testable analogies between transformation in bacteria and sexual selection in other organisms. For example, bacteria invest energy into DNA release, and male animals invest energy into creating lots of sperm--ditto for costly DNA uptake and reproduction and investing energy to create an egg cell, of which only half of the genetic material derives from the mother. Future studies could examine how much energy different bacteria species invest in transformation, which bacteria pass on more of their DNA, and what gave those bacteria an advantage.

Sexual selection can sometimes result in coercion where (usually) males evolve offensive tactics to coerce females into mating. This in turn selects for females to become resistant to the coercion. In bacteria, coercion could take the form of releasing chemical signals that prime other bacteria to take up DNA. In another possible example of sexual selection, recent research has found that some bacterial species take up DNA after selectively lysing (rupturing) unrelated strains, which can be expected to increase the chances of taking up novel adaptive genes from the ruptured cells.

"We believe sex by coercion might happen in bacteria too," says Vos. The Exeter scientists are now planning experiments to test these ideas.

In the roughly two dozen species of bacteria that serve as model systems for transformation, there is great variation in the genetic mechanisms and ecological cues controlling DNA uptake and release. It is likely that this diversity is much greater in the millions of bacterial species that have yet to be described. The authors hope that future research on bacterial gene exchange will take into account sexual-selection theory developed in the context of animals.
-end-
The authors acknowledge funding from NERC and the Royal Society.

Trends in Microbiology, Vos et al.: "Sexual selection in bacteria?" https://www.cell.com/trends/microbiology/fulltext/S0966-842X(19)30193-3

Trends in Microbiology, (@TrendsMicrobiol) published by Cell Press, is a monthly review journal that provides a multidisciplinary forum for the discussion of all aspects of microbiology--from cell biology and immunology to genetics and evolution--and ranges across virology, bacteriology, protozoology, and mycology. Visit: http://www.cell.com/trends/microbiology. To receive Cell Press media alerts, please contact press@cell.com.

Cell Press

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.