Nav: Home

Space dragons: Researchers observe energy consumption in quasars

September 04, 2019

Quasars are the Universe's brightest beacons; shining with magnitudes more luminosity than entire galaxies and the stars they contain. In the center of this light, at the heart of a quasar, researchers think, is an all-consuming black hole.

Researchers, for the first time, have observed the accelerated rate at which eight quasars consume interstellar fuel to feed their black holes.

They published their results on Sept 4th, Nature.

"As the most luminous steady beacons in the Universe, quasars are believed to be powered by an accretion disk around the central black hole," said Hongyan Zhou, paper author and faculty member at the University of Science and Technology of China. Zhou is also affiliated with the SOA Key Laboratory for Polar Science in the Polar Research Institute of China.

Zhou compared the black hole to a starved dragon.

"The supermassive black hole in the center of the quasar gobbles up an enormous amount of nearby materials, which glare and shine when they constitute an accretion disk before finally sliding down in the black hole," Zhou said. "Outside the accretion disk, materials are continuously pumped from all directions to the center by gravity to feed the black hole with an endless appetite."

An accretion disk is a spiraling mass of material centered around a monumental source of gravity consuming interstellar material--what researchers have theorized is a black hole. Much like how water empties out of a bathtub, the material spins much faster the closer it gets to the drain.

"We think this paradigm of black holes at the center of quasars is accurate, but fundamental questions remain unanswered: Is the accretion disk fueled with external mass? If so, how?" Zhou said.

The interstellar gas cannot be observed directly, as its radiation signature is overwhelmed by the accretion disk's brightness. Instead, researchers monitor for gas falling into the accretion disk that may pass through their line of sight. The gas makes a kind of eclipse between Earth and the accretion disk, casting lines onto the disk's spectrum of radiation.

The researchers used the Doppler effect to measure these lines and observe the velocity of gas feeding into the disk, toward the black hole. A classic Doppler effect example is how the pitch of a police siren drops once it passes. Astronomers call this passing pitch the "redshift" when measuring how quickly gases move toward an object away from Earth.

Zhou and his team measured velocities of 5,000 kilometers per second. For comparison, a passenger jet travels at less than a thousand kilometers per hour.

"Such a high velocity can only be accelerated by the strong gravity of the central black hole," Zhou said. "It's comparable to how, in a meteor shower, the closer the meteors get to the ground, the faster they fall."

In the quasars Zhou observed, the accretion disks were supplied with fast-falling external mass from surrounding space. The disks themselves then create inflows to the black hole.

Next, Zhou and his team plan to investigate exactly how these quasar "dragons" organize and differentiate the external mass from accretion disks to fuel inflows. According to Zhou, elucidation of this process could better inform the understanding of how quasars form, how long they last and when and how they end.
This work was supported by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation and the U.S. Department of Energy Office of Sciences, the National Natural Science Foundation of China, the SOC program and the Key Research Program of Chinese Academy of Sciences.

Also from the Polar Research Institute of China and the SOA Key Laboratory for Polar Science include Xiheng Shi, Tuo Ji, Peng Jiang, Xiang Pan, Shengmiao Wu, Chenwei Yang and Shaohua Zhang contributed to this study. Authors from the University of Science and Technology of China include Xiangjun Chen, Ge Li, Guilin Liu, Honglin Lu, Luming Sun, Huiyuan Wang, Tinggui Wang and Zhihao Zhong. Other contributors include Weimin Yuan and Bifang Li, both affiliated with the National Astronomical Observatories of China of the Chinese Academy of Sciences and the School of AStronomy and Space Science at the University of Chinese Academy of Sciences; Lei Hao and Juntai Shen, both of the Shanghai Astronomical Observatory of the Chinese Academy of Sciences; Jian Ge of the University of Florida's Department of Astronomy; Wenjuan Liu of the Chinese Academy of Sciences' Yunnan Observatories and the Key Laboratory for the Structure and Evolution of Celestial Objects; and Xinwen Shu of Anhui Normal University's Department of Physics.

University of Science and Technology of China

Related Black Hole Articles:

Black hole team discovers path to razor-sharp black hole images
A team of researchers have published new calculations that predict a striking and intricate substructure within black hole images from extreme gravitational light bending.
Planets around a black hole?
Theoreticians in two different fields defied the common knowledge that planets orbit stars like the Sun.
Black hole mergers: Cooking with gas
Gravitational wave detectors are finding black hole mergers in the universe at the rate of one per week.
Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
More Black Hole News and Black Hole Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.