Nav: Home

Earthquake symmetry

September 04, 2019

A recent study investigated around 100,000 localized seismic events to search for patterns in the data. University of Tokyo Professor Satoshi Ide discovered that earthquakes of differing magnitudes have more in common than was previously thought. This suggests development of early warning systems may be more difficult than hoped. But conversely, similarities between some events indicate that predictable characteristics may aid researchers attempting to forecast seismic events.

Since the 1980s seismologists - earthquake researchers - have wondered how feasible it might be to predict how an earthquake will behave given some information about its initial conditions. In particular whether you can tell the eventual magnitude based on seismic measurements near the point of origin, or epicenter. Most researchers consider this idea too improbable given the randomness of earthquake behavior, but Ide thinks there's more to it than that.

"Taking inspiration from a study comparing different-sized earthquakes, I decided to analyze a seismic data set from a region known as the Tohoku-Hokkaido subduction zone in eastern Japan," said Ide. "A systematic comparison of around 100,000 seismic events over 15 years leads me to believe earthquakes are not different in random ways but share many similarities."

To draw comparisons between different earthquakes, Ide first selected the larger examples from the data set with magnitudes greater than 4.5. He also selected smaller earthquakes in the same regions as these larger ones. Ide then ascertained mathematically how similar seismic signals were between pairs of large and small earthquakes. He used a statistical function for the comparison of signals called a cross-correlation on data from 10 seismic stations close to the pairs of earthquakes in each case.

"Some pairs of large and small earthquakes start with exactly the same shaking characteristics, so we cannot tell the magnitude of an earthquake from initial seismic observations," explained Ide. "This is bad news for earthquake early warning. However, for future forecasting attempts, given this symmetry between earthquakes of different magnitudes, it is good to know they are not completely random."

University of Tokyo

Related Earthquake Articles:

Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
Earthquake in super slo-mo
A big earthquake occurred south of Istanbul in the summer of 2016, but it was so slow that nobody noticed.
A milestone for forecasting earthquake hazards
In a new study in Science Advances, researchers report that their physics-based model of California earthquake hazards replicated estimates from the state's leading statistical model.
Mw 5.4 Pohang earthquake tied to geothermal activity?
The Mw 5.4 Pohang earthquake that occurred near a geothermal site in South Korea last year was likely triggered by fluid injection at the geothermal plant, two separate reports conclude.
Seismologists introduce new measure of earthquake ruptures
A team of seismologists has developed a new measurement of seismic energy release that can be applied to large earthquakes.
Residual strain despite mega earthquake
On Christmas Day 2016, the earth trembled in southern Chile.
The losses that come after the earthquake: Devastating and costly
The study, titled, 'Losses Associated with Secondary Effects in Earthquakes,' published by Frontiers in Built Environmen, looks at the devastation resulting from secondary disasters, such as tsunamis, liquefaction of sediments, fires, landslides, and flooding that occurred during 100 key earthquakes that occurred from 1900 to the present.
More Earthquake News and Earthquake Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at