It's not aurora, it's STEVE

September 04, 2019

Aurora-watchers gazing at spectacular displays over the Labor Day weekend may have been seeing more than the northern lights. They may have been dazzled by STEVE as well.

STEVE is short for the Strong Thermal Emissions Velocity Enhancement, a celestial phenomenon auroral researchers, citizen-scientists and photography enthusiasts first introduced to the world in 2016.

STEVE's narrow ribbon of light, to the naked eye, looks strikingly similar to aurora. However, there are distinct differences. First, its pinkish mauve color is not aurora-like. In addition, the phenomenon is often associated with "picket fence" emissions, which look like green columns of light passing through the ribbons at lower altitudes. Lastly, STEVE appears in areas farther south than auroral lights typically do.

Scientists thought something didn't add up.

This summer, researchers confirmed that STEVE is not aurora, but is instead a unique phenomenon. Their findings were published in the journal Geophysical Research Letters.

"The big thing is, we can clearly say now it's not regular aurora," said University of Alaska Fairbanks researcher Don Hampton, a co-author on the paper. "It's a new phenomenon, that's pretty exciting."

The project, led by University of Calgary researcher D.M. Gillies, used a spectrograph to examine the light from the phenomenon and identify what kind of emissions it gives and in what patterns and wavelengths. Hampton and his colleagues designed and built the spectrograph at the UAF Geophysical Institute.

"We need to understand what the spectrum looks like and therefore understand the physics behind it," Hampton said. A spectrum acts as a definitive identification, like a DNA test or chemical formula for light.

When the scientists looked at STEVE's spectrum they saw something unique. Aurora has individual wavelengths and acts like a neon sign. In aurora, electrons from our magnetosphere fly down, bumping into atoms and molecules in our atmosphere, which excites them. Once the excited particles relax they emit photons, which can be seen as specific wavelengths of light. Depending on which colors you see, you know certain lights came from a nitrogen molecule and others came from oxygen.

"When we looked at the spectrum of STEVE, it had none of those distinct wavelengths," Hampton said. "Instead, it's a very broad band of light. So all wavelengths are basically equally as strong."

This means that the light is not coming from atoms and molecules colliding in the atmosphere but from something very warm -- maybe thousands of degrees warm.

"When you turn your electric stove on, those coils get red hot, right? If you look at it with a spectrograph, you would see broadband emissions," Hampton said. "So this is like very, very warm atmosphere emissions of some sort."

The research also concluded that the picket fence emissions are similar to a typical aurora structure. These are caused by the same kinds of particle precipitation usually seen with aurora.

Like auroras, STEVE's appearances vary greatly, showing up anywhere from weeks to months apart.

Scientists have studied the hot particles associated with STEVE since the 1970s. However, they did not realize until recently that they produced a visible feature.

Confirming the existence of a celestial phenomenon is exciting, Hampton said. The next, and more difficult step, is finding out what causes it and how it affects us.

Any disturbance to our upper atmosphere, like aurora, can affect radio communications between Earth and spacecraft. STEVE is especially interesting because it is a large local energy input, but clearly not normal aurora.

"As a new phenomenon we want to understand not just why and how it is created, but also how does it affect our infrastructure," Hampton said. "We don't expect that if we understand how STEVE is created that we will cure cancer, or produce warp drive (though one never knows), but we do want to understand how one bit of the ionosphere works, and that may help overall knowledge as well as provide some practical understanding to reduce the impact on other aspects of our daily life."
ON THE WEB: For additional explanation of the phenomenon, watch this video from NASA:

University of Alaska Fairbanks

Related Emissions Articles from Brightsurf:

Multinationals' supply chains account for a fifth of global emissions
A fifth of carbon dioxide emissions come from multinational companies' global supply chains, according to a new study led by UCL and Tianjin University that shows the scope of multinationals' influence on climate change.

A new way of modulating color emissions from transparent films
Transparent luminescent materials have several applications; but so far, few multicolor light-emitting solid transparent materials exist in which the color of emission is tunable.

Can sunlight convert emissions into useful materials?
A team of researchers at the USC Viterbi School of Engineering has designed a method to break CO2 apart and convert the greenhouse gas into useful materials like fuels or consumer products ranging from pharmaceuticals to polymers.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Tracking fossil fuel emissions with carbon-14
Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.

COVID-19 puts brakes on global emissions
Carbon dioxide emissions from fossil fuel sources reached a maximum daily decline of 17 per cent in April as a result of drastic decline in energy demand that have occurred during the COVID-19 pandemic.

Egregious emissions
Call them 'super polluters' -- the handful of industrial facilities that emit unusually high levels of toxic chemical pollution year after year.

Continued CO2 emissions will impair cognition
New CU Boulder research finds that an anticipated rise in carbon dioxide concentrations in our indoor living and working spaces by the year 2100 could lead to impaired human cognition.

Capturing CO2 from trucks and reducing their emissions by 90%
Researchers at EPFL have patented a new concept that could cut trucks' CO2 emissions by almost 90%.

Big trucks, little emissions
Researchers reveal a new integrated, cost-efficient way of converting ethanol for fuel blends that can reduce greenhouse gas emissions.

Read More: Emissions News and Emissions Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to